BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 34035216)

  • 1. Ligand-dependent kinase activity of MERTK drives efferocytosis in human iPSC-derived macrophages.
    Wanke F; Gutbier S; Rümmelin A; Steinberg M; Hughes LD; Koenen M; Komuczki J; Regan-Komito D; Wagage S; Hesselmann J; Thoma R; Brugger D; Christopeit T; Wang H; Point F; Hallet R; Ghosh S; Rothlin CV; Patsch C; Geering B
    Cell Death Dis; 2021 May; 12(6):538. PubMed ID: 34035216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MERTK tyrosine kinase receptor together with TIM4 phosphatidylserine receptor mediates distinct signal transduction pathways for efferocytosis and cell proliferation.
    Nishi C; Yanagihashi Y; Segawa K; Nagata S
    J Biol Chem; 2019 May; 294(18):7221-7230. PubMed ID: 30846565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axl and MerTK receptor tyrosine kinases maintain human macrophage efferocytic capacity in the presence of viral triggers.
    Grabiec AM; Goenka A; Fife ME; Fujimori T; Hussell T
    Eur J Immunol; 2018 May; 48(5):855-860. PubMed ID: 29400409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efferocytosis is restricted by axon guidance molecule EphA4 via ERK/Stat6/MERTK signaling following brain injury.
    Soliman E; Leonard J; Basso EKG; Gershenson I; Ju J; Mills J; de Jager C; Kaloss AM; Elhassanny M; Pereira D; Chen M; Wang X; Theus MH
    J Neuroinflammation; 2023 Nov; 20(1):256. PubMed ID: 37941008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epithelial cell-directed efferocytosis in the post-partum mammary gland is necessary for tissue homeostasis and future lactation.
    Sandahl M; Hunter DM; Strunk KE; Earp HS; Cook RS
    BMC Dev Biol; 2010 Dec; 10():122. PubMed ID: 21192804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mertk Interacts with Tim-4 to Enhance Tim-4-Mediated Efferocytosis.
    Moon B; Lee J; Lee SA; Min C; Moon H; Kim D; Yang S; Moon H; Jeon J; Joo YE; Park D
    Cells; 2020 Jul; 9(7):. PubMed ID: 32640697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A+T rich interaction domain protein 3a (Arid3a) impairs Mertk-mediated efferocytosis in cholestasis.
    Chen R; Huang B; Lian M; Wei Y; Miao Q; Liang J; Ou Y; Liang X; Zhang H; Li Y; Xiao X; Wang Q; You Z; Chai J; Gershwin ME; Tang R; Ma X
    J Hepatol; 2023 Dec; 79(6):1478-1490. PubMed ID: 37659731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of MERTK receptor tyrosine kinase in epithelial cancer cells drives efferocytosis in a gain-of-function capacity.
    Nguyen KQ; Tsou WI; Calarese DA; Kimani SG; Singh S; Hsieh S; Liu Y; Lu B; Wu Y; Garforth SJ; Almo SC; Kotenko SV; Birge RB
    J Biol Chem; 2014 Sep; 289(37):25737-49. PubMed ID: 25074939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunoproteasome subunit β5i regulates diet-induced atherosclerosis through altering MERTK-mediated efferocytosis in Apoe knockout mice.
    Liao J; Xie Y; Lin Q; Yang X; An X; Xia Y; Du J; Wang F; Li HH
    J Pathol; 2020 Mar; 250(3):275-287. PubMed ID: 31758542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction.
    Wan E; Yeap XY; Dehn S; Terry R; Novak M; Zhang S; Iwata S; Han X; Homma S; Drosatos K; Lomasney J; Engman DM; Miller SD; Vaughan DE; Morrow JP; Kishore R; Thorp EB
    Circ Res; 2013 Sep; 113(8):1004-12. PubMed ID: 23836795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated expression of macrophage MERTK exhibits profibrotic effects and results in defective regulation of efferocytosis function in pulmonary fibrosis.
    She Y; Xu X; Yu Q; Yang X; He J; Tang XX
    Respir Res; 2023 Apr; 24(1):118. PubMed ID: 37120511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphatidylserine Sensing by TAM Receptors Regulates AKT-Dependent Chemoresistance and PD-L1 Expression.
    Kasikara C; Kumar S; Kimani S; Tsou WI; Geng K; Davra V; Sriram G; Devoe C; Nguyen KN; Antes A; Krantz A; Rymarczyk G; Wilczynski A; Empig C; Freimark B; Gray M; Schlunegger K; Hutchins J; Kotenko SV; Birge RB
    Mol Cancer Res; 2017 Jun; 15(6):753-764. PubMed ID: 28184013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibody Cross-Linking of CD14 Activates MerTK and Promotes Human Macrophage Clearance of Apoptotic Neutrophils: the Dual Role of CD14 at the Crossroads Between M1 and M2c Polarization.
    Zizzo G; Cohen PL
    Inflammation; 2018 Dec; 41(6):2206-2221. PubMed ID: 30091033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of Mertk Surface Expression via ADAM17 and γ-Secretase Proteolytic Processing.
    Lahey KC; Varsanyi C; Wang Z; Aquib A; Gadiyar V; Rodrigues AA; Pulica R; Desind S; Davra V; Calianese DC; Liu D; Cho JH; Kotenko SV; De Lorenzo MS; Birge RB
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CADHERIN-11 regulation of myeloid phagocytes and autoimmune inflammation in murine lupus.
    Chavula T; To S; Smith J; Pedroza M; Nimri J; Devaraj S; Wenderfer S; Vogel TP; Agarwal SK
    J Autoimmun; 2024 May; 145():103197. PubMed ID: 38447248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disturbed flow impairs MerTK-mediated efferocytosis in aortic endothelial cells during atherosclerosis.
    Wu J; Liu S; Banerjee O; Shi H; Xue B; Ding Z
    Theranostics; 2024; 14(6):2427-2441. PubMed ID: 38646649
    [No Abstract]   [Full Text] [Related]  

  • 17. Tyro3, Axl, Mertk receptor-mediated efferocytosis and immune regulation in the tumor environment.
    Zhou L; Matsushima GK
    Int Rev Cell Mol Biol; 2021; 361():165-210. PubMed ID: 34074493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of TAM family receptors and ligands in the nervous system: From development to pathobiology.
    Shafit-Zagardo B; Gruber RC; DuBois JC
    Pharmacol Ther; 2018 Aug; 188():97-117. PubMed ID: 29514053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment-Induced Tumor Cell Apoptosis and Secondary Necrosis Drive Tumor Progression in the Residual Tumor Microenvironment through MerTK and IDO1.
    Werfel TA; Elion DL; Rahman B; Hicks DJ; Sanchez V; Gonzales-Ericsson PI; Nixon MJ; James JL; Balko JM; Scherle PA; Koblish HK; Cook RS
    Cancer Res; 2019 Jan; 79(1):171-182. PubMed ID: 30413412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment.
    Myers KV; Amend SR; Pienta KJ
    Mol Cancer; 2019 May; 18(1):94. PubMed ID: 31088471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.