BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 34035216)

  • 21. Treatment-Induced Tumor Cell Apoptosis and Secondary Necrosis Drive Tumor Progression in the Residual Tumor Microenvironment through MerTK and IDO1.
    Werfel TA; Elion DL; Rahman B; Hicks DJ; Sanchez V; Gonzales-Ericsson PI; Nixon MJ; James JL; Balko JM; Scherle PA; Koblish HK; Cook RS
    Cancer Res; 2019 Jan; 79(1):171-182. PubMed ID: 30413412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting Tyro3, Axl and MerTK (TAM receptors): implications for macrophages in the tumor microenvironment.
    Myers KV; Amend SR; Pienta KJ
    Mol Cancer; 2019 May; 18(1):94. PubMed ID: 31088471
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe-/- mice.
    Thorp E; Cui D; Schrijvers DM; Kuriakose G; Tabas I
    Arterioscler Thromb Vasc Biol; 2008 Aug; 28(8):1421-8. PubMed ID: 18451332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ODC (Ornithine Decarboxylase)-Dependent Putrescine Synthesis Maintains MerTK (MER Tyrosine-Protein Kinase) Expression to Drive Resolution.
    Yurdagul A; Kong N; Gerlach BD; Wang X; Ampomah P; Kuriakose G; Tao W; Shi J; Tabas I
    Arterioscler Thromb Vasc Biol; 2021 Mar; 41(3):e144-e159. PubMed ID: 33406854
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DBA/2J Haplotype on Distal Chromosome 2 Reduces Mertk Expression, Restricts Efferocytosis, and Increases Susceptibility to Atherosclerosis.
    Kayashima Y; Makhanova N; Maeda N
    Arterioscler Thromb Vasc Biol; 2017 Jul; 37(7):e82-e91. PubMed ID: 28473436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Opposite Roles of MerTK Ligands Gas6 and Protein S During Retinal Phagocytosis.
    Nandrot EF
    Adv Exp Med Biol; 2018; 1074():577-583. PubMed ID: 29721990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of Enhanced MerTK-Dependent Macrophage Efferocytosis by Extracellular Vesicles.
    de Couto G; Jaghatspanyan E; DeBerge M; Liu W; Luther K; Wang Y; Tang J; Thorp EB; Marbán E
    Arterioscler Thromb Vasc Biol; 2019 Oct; 39(10):2082-2096. PubMed ID: 31434491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeting MerTK decreases efferocytosis and increases anti-tumor immune infiltrate in prostate cancer.
    Myers Chen KV; de Groot AE; Mendez SA; Mallin MM; Amend SR; Pienta KJ
    Med Oncol; 2023 Aug; 40(10):284. PubMed ID: 37644281
    [TBL] [Abstract][Full Text] [Related]  

  • 29. M2
    Lai YS; Putra RBDS; Aui SP; Chang KT
    Am J Chin Med; 2018; 46(8):1899-1914. PubMed ID: 30518232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of TAM-R in Human Immune Cells and Unique Regulatory Function of MerTK in IL-10 Production by Tolerogenic DC.
    Giroud P; Renaudineau S; Gudefin L; Calcei A; Menguy T; Rozan C; Mizrahi J; Caux C; Duong V; Valladeau-Guilemond J
    Front Immunol; 2020; 11():564133. PubMed ID: 33101282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BMS794833 inhibits macrophage efferocytosis by directly binding to MERTK and inhibiting its activity.
    Bae SH; Kim JH; Park TH; Lee K; Lee BI; Jang H
    Exp Mol Med; 2022 Sep; 54(9):1450-1460. PubMed ID: 36056187
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Angiotensin II deteriorates advanced atherosclerosis by promoting MerTK cleavage and impairing efferocytosis through the AT
    Zhang Y; Wang Y; Zhou D; Zhang LS; Deng FX; Shu S; Wang LJ; Wu Y; Guo N; Zhou J; Yuan ZY
    Am J Physiol Cell Physiol; 2019 Oct; 317(4):C776-C787. PubMed ID: 31390228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Myeloid-Epithelial-Reproductive Receptor Tyrosine Kinase and Milk Fat Globule Epidermal Growth Factor 8 Coordinately Improve Remodeling After Myocardial Infarction via Local Delivery of Vascular Endothelial Growth Factor.
    Howangyin KY; Zlatanova I; Pinto C; Ngkelo A; Cochain C; Rouanet M; Vilar J; Lemitre M; Stockmann C; Fleischmann BK; Mallat Z; Silvestre JS
    Circulation; 2016 Mar; 133(9):826-39. PubMed ID: 26819373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efferocytosis is restricted by axon guidance molecule EphA4 via ERK/Stat6/Mertk signaling following brain injury.
    Soliman E; Leonard J; Basso EK; Gershenson I; Ju J; Mills J; Jager C; Kaloss AM; Elhassanny M; Pereira D; Chen M; Wang X; Theus MH
    Res Sq; 2023 Jun; ():. PubMed ID: 37461720
    [TBL] [Abstract][Full Text] [Related]  

  • 35. We are what we eat: macrophages and efferocytosis.
    Cunningham KT; Maizels RM
    Trends Parasitol; 2024 Jun; 40(6):446-448. PubMed ID: 38772757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TAM receptors and their ligand-mediated activation: Role in atherosclerosis.
    Cai B; Kasikara C
    Int Rev Cell Mol Biol; 2020; 357():21-33. PubMed ID: 33234243
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Macrophage-Derived Protein S Facilitates Apoptotic Polymorphonuclear Cell Clearance by Resolution Phase Macrophages and Supports Their Reprogramming.
    Lumbroso D; Soboh S; Maimon A; Schif-Zuck S; Ariel A; Burstyn-Cohen T
    Front Immunol; 2018; 9():358. PubMed ID: 29545796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MicroRNA-126 overexpression rescues diabetes-induced impairment in efferocytosis of apoptotic cardiomyocytes.
    Suresh Babu S; Thandavarayan RA; Joladarashi D; Jeyabal P; Krishnamurthy S; Bhimaraj A; Youker KA; Krishnamurthy P
    Sci Rep; 2016 Nov; 6():36207. PubMed ID: 27827458
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeted degradation of MERTK and other TAM receptor paralogs by heterobifunctional targeted protein degraders.
    Gadiyar V; Patel G; Chen J; Vigil D; Ji N; Campbell V; Sharma K; Shi Y; Weiss MM; Birge RB; Davra V
    Front Immunol; 2023; 14():1135373. PubMed ID: 37545504
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AXL Expression on Homeostatic Resident Liver Macrophages Is Reduced in Cirrhosis Following GAS6 Production by Hepatic Stellate Cells.
    Pop OT; Geng A; Flint E; Singanayagam A; Ercan C; Possamai L; Patel VC; Kuenzler P; Meier MA; Soysal S; Hruz P; Kollmar O; Tatham KC; Ward JK; Müllhaupt B; Weber A; Wendon J; Niess JH; Heim M; Semela D; Weston C; Antoniades CG; Terracciano LM; Triantafyllou E; Brenig RG; Bernsmeier C
    Cell Mol Gastroenterol Hepatol; 2023; 16(1):17-37. PubMed ID: 37004869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.