These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34035239)

  • 1. Water friction in nanofluidic channels made from two-dimensional crystals.
    Keerthi A; Goutham S; You Y; Iamprasertkun P; Dryfe RAW; Geim AK; Radha B
    Nat Commun; 2021 May; 12(1):3092. PubMed ID: 34035239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures.
    Tocci G; Joly L; Michaelides A
    Nano Lett; 2014 Dec; 14(12):6872-7. PubMed ID: 25394228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating Water Slip Using Atomic-Scale Defects: Friction on Realistic Hexagonal Boron Nitride Surfaces.
    Seal A; Govind Rajan A
    Nano Lett; 2021 Oct; 21(19):8008-8016. PubMed ID: 34606287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquids with Lower Wettability Can Exhibit Higher Friction on Hexagonal Boron Nitride: The Intriguing Role of Solid-Liquid Electrostatic Interactions.
    Govind Rajan A; Strano MS; Blankschtein D
    Nano Lett; 2019 Mar; 19(3):1539-1551. PubMed ID: 30694070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular transport through capillaries made with atomic-scale precision.
    Radha B; Esfandiar A; Wang FC; Rooney AP; Gopinadhan K; Keerthi A; Mishchenko A; Janardanan A; Blake P; Fumagalli L; Lozada-Hidalgo M; Garaj S; Haigh SJ; Grigorieva IV; Wu HA; Geim AK
    Nature; 2016 Oct; 538(7624):222-225. PubMed ID: 27602512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced nanofluidic transport in activated carbon nanoconduits.
    Emmerich T; Vasu KS; Niguès A; Keerthi A; Radha B; Siria A; Bocquet L
    Nat Mater; 2022 Jun; 21(6):696-702. PubMed ID: 35422506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct Chemistries Explain Decoupling of Slip and Wettability in Atomically Smooth Aqueous Interfaces.
    Poggioli AR; Limmer DT
    J Phys Chem Lett; 2021 Sep; 12(37):9060-9067. PubMed ID: 34516117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stick-slip control in nanoscale boundary lubrication by surface wettability.
    Chen W; Foster AS; Alava MJ; Laurson L
    Phys Rev Lett; 2015 Mar; 114(9):095502. PubMed ID: 25793825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong Coupling between Nanofluidic Transport and Interfacial Chemistry: How Defect Reactivity Controls Liquid-Solid Friction through Hydrogen Bonding.
    Joly L; Tocci G; Merabia S; Michaelides A
    J Phys Chem Lett; 2016 Apr; 7(7):1381-6. PubMed ID: 27012818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular streaming and its voltage control in ångström-scale channels.
    Mouterde T; Keerthi A; Poggioli AR; Dar SA; Siria A; Geim AK; Bocquet L; Radha B
    Nature; 2019 Mar; 567(7746):87-90. PubMed ID: 30842639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of electronic friction from the walls on water flow in carbon nanotubes and on water desalination.
    Sokoloff JB
    Phys Rev E; 2019 Aug; 100(2-1):023112. PubMed ID: 31574735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying Water Friction in Misaligned Graphene Channels under Ångström Confinements.
    Wagemann E; Misra S; Das S; Mitra SK
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35757-35764. PubMed ID: 32662264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Dynamics of Water in Porous Two-Dimensional Crystals.
    Strong SE; Eaves JD
    J Phys Chem B; 2017 Jan; 121(1):189-207. PubMed ID: 28009520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous interplay of slip, shear and wettability in nanoconfined water.
    Bakli C; Chakraborty S
    Nanoscale; 2019 Jun; 11(23):11254-11261. PubMed ID: 31162505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High and Stable Ionic Conductivity in 2D Nanofluidic Ion Channels between Boron Nitride Layers.
    Qin S; Liu D; Wang G; Portehault D; Garvey CJ; Gogotsi Y; Lei W; Chen Y
    J Am Chem Soc; 2017 May; 139(18):6314-6320. PubMed ID: 28418247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water Flow in Single-Wall Nanotubes: Oxygen Makes It Slip, Hydrogen Makes It Stick.
    Thiemann FL; Schran C; Rowe P; Müller EA; Michaelides A
    ACS Nano; 2022 Jul; 16(7):10775-10782. PubMed ID: 35726839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultralow liquid/solid friction in carbon nanotubes: comprehensive theory for alcohols, alkanes, OMCTS, and water.
    Falk K; Sedlmeier F; Joly L; Netz RR; Bocquet L
    Langmuir; 2012 Oct; 28(40):14261-72. PubMed ID: 22974715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluctuation-induced quantum friction in nanoscale water flows.
    Kavokine N; Bocquet ML; Bocquet L
    Nature; 2022 Feb; 602(7895):84-90. PubMed ID: 35110760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast increase of nanofluidic slip in supercooled water: the key role of dynamics.
    Herrero C; Tocci G; Merabia S; Joly L
    Nanoscale; 2020 Oct; 12(39):20396-20403. PubMed ID: 33021296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.