BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34035257)

  • 1. Motion of water monomers reveals a kinetic barrier to ice nucleation on graphene.
    Tamtögl A; Bahn E; Sacchi M; Zhu J; Ward DJ; Jardine AP; Jenkins SJ; Fouquet P; Ellis J; Allison W
    Nat Commun; 2021 May; 12(1):3120. PubMed ID: 34035257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Author Correction: Motion of water monomers reveals a kinetic barrier to ice nucleation on graphene.
    Tamtögl A; Bahn E; Sacchi M; Zhu J; Ward DJ; Jardine AP; Jenkins SJ; Fouquet P; Ellis J; Allison W
    Nat Commun; 2021 Nov; 12(1):6828. PubMed ID: 34795294
    [No Abstract]   [Full Text] [Related]  

  • 3. Probing the critical nucleus size for ice formation with graphene oxide nanosheets.
    Bai G; Gao D; Liu Z; Zhou X; Wang J
    Nature; 2019 Dec; 576(7787):437-441. PubMed ID: 31853083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational investigation of surface freezing in a molecular model of water.
    Haji-Akbari A; Debenedetti PG
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3316-3321. PubMed ID: 28292905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous ice nucleation correlates with bulk-like interfacial water.
    Wu S; He Z; Zang J; Jin S; Wang Z; Wang J; Yao Y; Wang J
    Sci Adv; 2019 Apr; 5(4):eaat9825. PubMed ID: 30993196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired Materials for Controlling Ice Nucleation, Growth, and Recrystallization.
    He Z; Liu K; Wang J
    Acc Chem Res; 2018 May; 51(5):1082-1091. PubMed ID: 29664599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Nanoscale Interfacial Proximity in Contact Freezing in Water.
    Hussain S; Haji-Akbari A
    J Am Chem Soc; 2021 Feb; 143(5):2272-2284. PubMed ID: 33507741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous Ice Nucleation: Interplay of Surface Properties and Their Impact on Water Orientations.
    Glatz B; Sarupria S
    Langmuir; 2018 Jan; 34(3):1190-1198. PubMed ID: 29020452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can clathrates heterogeneously nucleate ice?
    Factorovich MH; Naullage PM; Molinero V
    J Chem Phys; 2019 Sep; 151(11):114707. PubMed ID: 31542043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time TEM observations of ice formation in graphene liquid cell.
    Phakatkar AH; Megaridis CM; Shokuhfar T; Shahbazian-Yassar R
    Nanoscale; 2023 Apr; 15(15):7006-7013. PubMed ID: 36946122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of ice nucleation: freezing and antifreeze strategies.
    Zhang Z; Liu XY
    Chem Soc Rev; 2018 Sep; 47(18):7116-7139. PubMed ID: 30137078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water adsorption on Rh(111) at 20 K: from monomer to bulk amorphous ice.
    Yamamoto S; Beniya A; Mukai K; Yamashita Y; Yoshinobu J
    J Phys Chem B; 2005 Mar; 109(12):5816-23. PubMed ID: 16851634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homogeneous ice nucleation at moderate supercooling from molecular simulation.
    Sanz E; Vega C; Espinosa JR; Caballero-Bernal R; Abascal JL; Valeriani C
    J Am Chem Soc; 2013 Oct; 135(40):15008-17. PubMed ID: 24010583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical prediction of the homogeneous ice nucleation rate: disentangling thermodynamics and kinetics.
    Cheng B; Dellago C; Ceriotti M
    Phys Chem Chem Phys; 2018 Nov; 20(45):28732-28740. PubMed ID: 30412211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new mechanism of the interfacial water film dominating low ice friction.
    Zhao Y; Wu Y; Bao L; Zhou F; Liu W
    J Chem Phys; 2022 Dec; 157(23):234703. PubMed ID: 36550039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Faster Nucleation of Ice at the Three-Phase Contact Line: Influence of Interfacial Chemistry.
    Kar A; Bhati A; Lokanathan M; Bahadur V
    Langmuir; 2021 Nov; 37(43):12673-12680. PubMed ID: 34694119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight on Structure of Water and Ice Next to Graphene Using Surface-Sensitive Spectroscopy.
    Singla S; Anim-Danso E; Islam AE; Ngo Y; Kim SS; Naik RR; Dhinojwala A
    ACS Nano; 2017 May; 11(5):4899-4906. PubMed ID: 28448717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Routes to cubic ice through heterogeneous nucleation.
    Davies MB; Fitzner M; Michaelides A
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33766916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyl Groups on the Graphene Surfaces Facilitate Ice Nucleation.
    Xue H; Lu Y; Geng H; Dong B; Wu S; Fan Q; Zhang Z; Li X; Zhou X; Wang J
    J Phys Chem Lett; 2019 May; 10(10):2458-2462. PubMed ID: 31038967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Externally applied electric fields up to 1.6 × 10(5) V/m do not affect the homogeneous nucleation of ice in supercooled water.
    Stan CA; Tang SK; Bishop KJ; Whitesides GM
    J Phys Chem B; 2011 Feb; 115(5):1089-97. PubMed ID: 21174462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.