These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34035324)

  • 1. Grain size effect on the radiation damage tolerance of cubic zirconia against simultaneous low and high energy heavy ions: Nano triumphs bulk.
    Kalita P; Ghosh S; Gutierrez G; Rajput P; Grover V; Sattonnay G; Avasthi DK
    Sci Rep; 2021 May; 11(1):10886. PubMed ID: 34035324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiation tolerance of nanocrystalline ceramics: insights from Yttria Stabilized Zirconia.
    Dey S; Drazin JW; Wang Y; Valdez JA; Holesinger TG; Uberuaga BP; Castro RH
    Sci Rep; 2015 Jan; 5():7746. PubMed ID: 25582769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on damage of Gd
    Haq WU; Grover V; Kalita P; Shukla R; Singh F; Srivastava SK; Shukla S; Ghosh S
    Phys Chem Chem Phys; 2024 Feb; 26(6):5311-5322. PubMed ID: 38268444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual Beam In Situ Radiation Studies of Nanocrystalline Cu.
    Fan C; Shang Z; Niu T; Li J; Wang H; Zhang X
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31450669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological characterization of low-energy ions with high-energy deposition on human cells.
    Saha J; Wilson P; Thieberger P; Lowenstein D; Wang M; Cucinotta FA
    Radiat Res; 2014 Sep; 182(3):282-91. PubMed ID: 25098728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amorphization of nanocrystalline monoclinic ZrO2 by swift heavy ion irradiation.
    Lu F; Wang J; Lang M; Toulemonde M; Namavar F; Trautmann C; Zhang J; Ewing RC; Lian J
    Phys Chem Chem Phys; 2012 Sep; 14(35):12295-300. PubMed ID: 22858872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion beam-induced amorphous-to-tetragonal phase transformation and grain growth of nanocrystalline zirconia.
    Lian J; Zhang J; Namavar F; Zhang Y; Lu F; Haider H; Garvin K; Weber WJ; Ewing RC
    Nanotechnology; 2009 Jun; 20(24):245303. PubMed ID: 19468161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation tolerance of La-doped nanocrystalline steel under heavy-ion irradiation at different temperatures.
    Fang Y; Ge W; Yang T; Du C; Wang C; Liu S; Lu Y; Yan Z; Liu H; Liu F; Yang G; Shen T; Wang Y
    Nanotechnology; 2018 Dec; 29(49):494001. PubMed ID: 30215617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries.
    Dey S; Mardinly J; Wang Y; Valdez JA; Holesinger TG; Uberuaga BP; Ditto JJ; Drazin JW; Castro RH
    Phys Chem Chem Phys; 2016 Jun; 18(25):16921-9. PubMed ID: 27282392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.
    Wang YY; Grygiel C; Dufour C; Sun JR; Wang ZG; Zhao YT; Xiao GQ; Cheng R; Zhou XM; Ren JR; Liu SD; Lei Y; Sun YB; Ritter R; Gruber E; Cassimi A; Monnet I; Bouffard S; Aumayr F; Toulemonde M
    Sci Rep; 2014 Jul; 4():5742. PubMed ID: 25034006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive response of low linear energy transfer X-rays for protection against high linear energy transfer accelerated heavy ion-induced teratogenesis.
    Wang B; Ninomiya Y; Tanaka K; Maruyama K; Varès G; Eguchi-Kasai K; Nenoi M
    Birth Defects Res B Dev Reprod Toxicol; 2012 Dec; 95(6):379-85. PubMed ID: 23109298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different Radiation Tolerances of Ultrafine-Grained Zirconia-Magnesia Composite Ceramics with Different Grain Sizes.
    Qin W; Hong M; Wang Y; Tang J; Cai G; Yin R; Ruan X; Yang B; Jiang C; Ren F
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31438471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ TEM of radiation effects in complex ceramics.
    Lian J; Wang LM; Sun K; Ewing RC
    Microsc Res Tech; 2009 Mar; 72(3):165-81. PubMed ID: 19130508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison between Subsequent Irradiation and Co-Irradiation into SIMP Steel.
    Wang Y; Zhang T; Liao Q; Yang J; Gu W; Ren Y; Jia Z; Li B
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33809379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Observation of Sink-Dependent Defect Evolution in Nanocrystalline Iron under Irradiation.
    El-Atwani O; Nathaniel JE; Leff AC; Hattar K; Taheri ML
    Sci Rep; 2017 May; 7(1):1836. PubMed ID: 28500318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox response of actinide materials to highly ionizing radiation.
    Tracy CL; Lang M; Pray JM; Zhang F; Popov D; Park C; Trautmann C; Bender M; Severin D; Skuratov VA; Ewing RC
    Nat Commun; 2015 Jan; 6():6133. PubMed ID: 25626111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Study of the Radiation Tolerance of CVD Diamond to 70 MeV Protons, Fast Neutrons and 200 MeV Pions.
    Bäni L; Alexopoulos A; Artuso M; Bachmair F; Bartosik MR; Beck HC; Bellini V; Belyaev V; Bentele B; Bes A; Brom JM; Chiodini G; Chren D; Cindro V; Claus G; Collot J; Cumalat J; Curtoni S; Dabrowski AE; D'Alessandro R; Dauvergne D; De Boer W; Dorfer C; Dünser M; Eigen G; Eremin V; Forneris J; Gallin-Martel L; Gallin-Martel ML; Gan KK; Gastal M; Ghimouz A; Goffe M; Goldstein J; Golubev A; Gorišek A; Grigoriev E; Grosse-Knetter J; Grummer A; Hiti B; Hits D; Hoeferkamp M; Hosselet J; Hügging F; Hutson C; Janssen J; Kagan H; Kanxheri K; Kass R; Kis M; Kramberger G; Kuleshov S; Lacoste A; Lagomarsino S; Giudice AL; Paz IL; Lukosi E; Maazouzi C; Mandić I; Marcatili S; Marino A; Mathieu C; Menichelli M; Mikuž M; Morozzi A; Moscatelli F; Moss J; Mountain R; Oh A; Olivero P; Passeri D; Pernegger H; Perrino R; Picollo F; Pomorski M; Potenza R; Quadt A; Rarbi F; Re A; Reichmann M; Roe S; Rossetto O; Becerra DAS; Schmidt CJ; Schnetzer S; Sciortino S; Scorzoni A; Seidel S; Servoli L; Smith DS; Sopko B; Sopko V; Spagnolo S; Spanier S; Stenson K; Stone R; Stugu B; Sutera C; Traeger M; Trischuk W; Truccato M; Tuvè C; Velthuis J; Wagner S; Wallny R; Wang J; Wermes N; Wickramasinghe J; Yamouni M; Zalieckas J; Zavrtanik M; Hara K; Ikegami Y; Jinnouchi O; Kohriki T; Mitsui S; Nagai R; Terada S; Unno Y
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33233598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are two-dimensional materials radiation tolerant?
    Krasheninnikov AV
    Nanoscale Horiz; 2020 Nov; 5(11):1447-1452. PubMed ID: 32969454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding and simulating the material behavior during multi-particle irradiations.
    Mir AH; Toulemonde M; Jegou C; Miro S; Serruys Y; Bouffard S; Peuget S
    Sci Rep; 2016 Jul; 6():30191. PubMed ID: 27466040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ TEM observation of alpha-particle induced annealing of radiation damage in Durango apatite.
    Li W; Shen Y; Zhou Y; Nan S; Chen CH; Ewing RC
    Sci Rep; 2017 Oct; 7(1):14108. PubMed ID: 29074979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.