These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34035342)

  • 1. Biological autoluminescence for assessing oxidative processes in yeast cell cultures.
    Vahalová P; Červinková K; Cifra M
    Sci Rep; 2021 May; 11(1):10852. PubMed ID: 34035342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological autoluminescence as a noninvasive monitoring tool for chemical and physical modulation of oxidation in yeast cell culture.
    Bereta M; Teplan M; Chafai DE; Radil R; Cifra M
    Sci Rep; 2021 Jan; 11(1):328. PubMed ID: 33431983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of the biological autoluminescence by mito-liposomal gold nanoparticle nanocarriers.
    Sardarabadi H; Chafai DE; Gheybi F; Sasanpour P; Rafii-Tabar H; Cifra M
    J Photochem Photobiol B; 2020 Mar; 204():111812. PubMed ID: 32062391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular redox homeostasis, reactive oxygen species and replicative ageing in Saccharomyces cerevisiae.
    Ayer A; Gourlay CW; Dawes IW
    FEMS Yeast Res; 2014 Feb; 14(1):60-72. PubMed ID: 24164795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological autoluminescence enables effective monitoring of yeast cell electroporation.
    Bereta M; Teplan M; Zakar T; Vuviet H; Cifra M; Chafai DE
    Biotechnol J; 2024 Apr; 19(4):e2300475. PubMed ID: 38651262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive response of the yeast Saccharomyces cerevisiae to reactive oxygen species: defences, damage and death.
    Moradas-Ferreira P; Costa V
    Redox Rep; 2000; 5(5):277-85. PubMed ID: 11145102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of reactive oxygen species in ultra-weak photon emission in biological systems.
    Pospíšil P; Prasad A; Rác M
    J Photochem Photobiol B; 2014 Oct; 139():11-23. PubMed ID: 24674863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-acetyltransferase Mpr1 confers freeze tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X; Takagi H
    J Biochem; 2005 Oct; 138(4):391-7. PubMed ID: 16272133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Budding yeast Saccharomyces cerevisiae as a model to study oxidative modification of proteins in eukaryotes.
    Lushchak VI
    Acta Biochim Pol; 2006; 53(4):679-84. PubMed ID: 17063208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein oxidation, repair mechanisms and proteolysis in Saccharomyces cerevisiae.
    Costa V; Quintanilha A; Moradas-Ferreira P
    IUBMB Life; 2007; 59(4-5):293-8. PubMed ID: 17505968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress and aging: Learning from yeast lessons.
    Eleutherio E; Brasil AA; França MB; de Almeida DSG; Rona GB; Magalhães RSS
    Fungal Biol; 2018 Jun; 122(6):514-525. PubMed ID: 29801796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring peroxides generation during model wine fermentation by FOX-1 assay.
    Bridi R; González A; Bordeu E; López-Alarcón C; Aspée A; Diethelm B; Lissi E; Parpinello GP; Versari A
    Food Chem; 2015 May; 175():25-8. PubMed ID: 25577046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The novel equisetin-like compound, TA-289, causes aberrant mitochondrial morphology which is independent of the production of reactive oxygen species in Saccharomyces cerevisiae.
    Quek NC; Matthews JH; Bloor SJ; Jones DA; Bircham PW; Heathcott RW; Atkinson PH
    Mol Biosyst; 2013 Aug; 9(8):2125-33. PubMed ID: 23715404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological autoluminescence as a perturbance-free method for monitoring oxidation in biosystems.
    Vahalová P; Cifra M
    Prog Biophys Mol Biol; 2023 Jan; 177():80-108. PubMed ID: 36336139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel applications of ubiquinone biopolymer nanocarriers for preventive and regenerative therapeutics: The Saccharomyces cerevisiae paradigm.
    Hoennscheidt C; Margaritis A; Krull R
    Int J Pharm; 2015 Jan; 478(1):416-425. PubMed ID: 25448560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using spontaneous photon emission to image lipid oxidation patterns in plant tissues.
    Birtic S; Ksas B; Genty B; Mueller MJ; Triantaphylidès C; Havaux M
    Plant J; 2011 Sep; 67(6):1103-15. PubMed ID: 21595761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dimethyl sulfoxide induces oxidative stress in the yeast Saccharomyces cerevisiae.
    Sadowska-Bartosz I; Pączka A; Mołoń M; Bartosz G
    FEMS Yeast Res; 2013 Dec; 13(8):820-30. PubMed ID: 24028688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autoluminescence imaging: a non-invasive tool for mapping oxidative stress.
    Havaux M; Triantaphylidès C; Genty B
    Trends Plant Sci; 2006 Oct; 11(10):480-4. PubMed ID: 16956784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are Metal Ions That Make up Orthodontic Alloys Cytotoxic, and Do They Induce Oxidative Stress in a Yeast Cell Model?
    Kovač V; Poljšak B; Primožič J; Jamnik P
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33121155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence Detection of Increased Reactive Oxygen Species Levels in Saccharomyces cerevisiae at the Diauxic Shift.
    Sinha A; Pick E
    Methods Mol Biol; 2021; 2202():81-91. PubMed ID: 32857348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.