BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34035411)

  • 1. Extracting neuronal activity signals from microscopy recordings of contractile tissue using B-spline Explicit Active Surfaces (BEAS) cell tracking.
    Kazwiny Y; Pedrosa J; Zhang Z; Boesmans W; D'hooge J; Vanden Berghe P
    Sci Rep; 2021 May; 11(1):10937. PubMed ID: 34035411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimising adjacent membrane segmentation and parameterisation in multicellular aggregates by piecewise active contours.
    Jara-Wilde J; Castro I; Lemus CG; Palma K; Valdés F; Castañeda V; Hitschfeld N; Concha ML; Härtel S
    J Microsc; 2020 May; 278(2):59-75. PubMed ID: 32141623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated identification and tracking of cells in Cytometry of Reaction Rate Constant (CRRC).
    Nebbioso G; Yosief R; Koshkin V; Qiu Y; Peng C; Elisseev V; Krylov SN
    PLoS One; 2023; 18(7):e0282990. PubMed ID: 37399195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A robust algorithm for segmenting and tracking clustered cells in time-lapse fluorescent microscopy.
    Tarnawski W; Kurtcuoglu V; Lorek P; Bodych M; Rotter J; Muszkieta M; Piwowar Ł; Poulikakos D; Majkowski M; Ferrari A
    IEEE J Biomed Health Inform; 2013 Jul; 17(4):862-9. PubMed ID: 25055315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ABLE: An Activity-Based Level Set Segmentation Algorithm for Two-Photon Calcium Imaging Data.
    Reynolds S; Abrahamsson T; Schuck R; Sjöström PJ; Schultz SR; Dragotti PL
    eNeuro; 2017; 4(5):. PubMed ID: 29085906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a Rhythmic Firing Pattern in the Enteric Nervous System That Generates Rhythmic Electrical Activity in Smooth Muscle.
    Spencer NJ; Hibberd TJ; Travis L; Wiklendt L; Costa M; Hu H; Brookes SJ; Wattchow DA; Dinning PG; Keating DJ; Sorensen J
    J Neurosci; 2018 Jun; 38(24):5507-5522. PubMed ID: 29807910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent molecules as tools to study Ca2+ signaling, mitochondrial dynamics and synaptic function in enteric neurons.
    Vanden Berghe P
    Verh K Acad Geneeskd Belg; 2004; 66(5-6):407-25. PubMed ID: 15641568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic three-dimensional segmentation of mouse embryonic stem cell nuclei by utilising multiple channels of confocal fluorescence images.
    Chang YH; Yokota H; Abe K; Tasi MD; Chu SL
    J Microsc; 2021 Jan; 281(1):57-75. PubMed ID: 32720710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive tracking algorithm for trajectory analysis of cells and layer-by-layer assessment of motility dynamics.
    Qureshi MH; Ozlu N; Bayraktar H
    Comput Biol Med; 2022 Nov; 150():106193. PubMed ID: 37859286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fully-automated, robust, and versatile algorithm for long-term budding yeast segmentation and tracking.
    Wood NE; Doncic A
    PLoS One; 2019; 14(3):e0206395. PubMed ID: 30917124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple nuclei tracking using integer programming for quantitative cancer cell cycle analysis.
    Li F; Zhou X; Ma J; Wong ST
    IEEE Trans Med Imaging; 2010 Jan; 29(1):96-105. PubMed ID: 19643704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SC-Track: a robust cell-tracking algorithm for generating accurate single-cell lineages from diverse cell segmentations.
    Li C; Xie SS; Wang J; Sharvia S; Chan KY
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38704671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated Cell Tracking Using Motion Prediction-Based Matching and Event Handling.
    Boukari F; Makrogiannis S
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):959-971. PubMed ID: 30334766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segmentation and shape tracking of whole fluorescent cells based on the Chan-Vese model.
    Maška M; Daněk O; Garasa S; Rouzaut A; Muñoz-Barrutia A; Ortiz-de-Solorzano C
    IEEE Trans Med Imaging; 2013 Jun; 32(6):995-1006. PubMed ID: 23372077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell segmentation and tracking using CNN-based distance predictions and a graph-based matching strategy.
    Scherr T; Löffler K; Böhland M; Mikut R
    PLoS One; 2020; 15(12):e0243219. PubMed ID: 33290432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates.
    Mikić I; Krucinski S; Thomas JD
    IEEE Trans Med Imaging; 1998 Apr; 17(2):274-84. PubMed ID: 9688159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium imaging of gut activity.
    Tack J; Smith TK
    Neurogastroenterol Motil; 2004 Apr; 16 Suppl 1():86-95. PubMed ID: 15066011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-objective Parameter Auto-tuning for Tissue Image Segmentation Workflows.
    Taveira LFR; Kurc T; Melo ACMA; Kong J; Bremer E; Saltz JH; Teodoro G
    J Digit Imaging; 2019 Jun; 32(3):521-533. PubMed ID: 30402669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Tracking of Migrating Cells from Live Microscopy Time-Lapses.
    Tosi S; Campbell K
    Methods Mol Biol; 2019; 2040():385-395. PubMed ID: 31432489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical imaging methods for mitosis analysis in live-cell phase contrast microscopy.
    Grah JS; Harrington JA; Koh SB; Pike JA; Schreiner A; Burger M; Schönlieb CB; Reichelt S
    Methods; 2017 Feb; 115():91-99. PubMed ID: 28189773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.