These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34036288)

  • 1. Self-supervised learning and prediction of microstructure evolution with convolutional recurrent neural networks.
    Yang K; Cao Y; Zhang Y; Fan S; Tang M; Aberg D; Sadigh B; Zhou F
    Patterns (N Y); 2021 May; 2(5):100243. PubMed ID: 34036288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine-learning-based data-driven discovery of nonlinear phase-field dynamics.
    Kiyani E; Silber S; Kooshkbaghi M; Karttunen M
    Phys Rev E; 2022 Dec; 106(6-2):065303. PubMed ID: 36671129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particles to partial differential equations parsimoniously.
    Arbabi H; Kevrekidis IG
    Chaos; 2021 Mar; 31(3):033137. PubMed ID: 33810723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coarse-scale PDEs from fine-scale observations via machine learning.
    Lee S; Kooshkbaghi M; Spiliotis K; Siettos CI; Kevrekidis IG
    Chaos; 2020 Jan; 30(1):013141. PubMed ID: 32013472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physics-incorporated convolutional recurrent neural networks for source identification and forecasting of dynamical systems.
    Saha P; Dash S; Mukhopadhyay S
    Neural Netw; 2021 Dec; 144():359-371. PubMed ID: 34547672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of Average Grain Size from Microstructure Image Using a Convolutional Neural Network.
    Jung JH; Lee SJ; Kim HS
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning approach for chemistry and processing history prediction from materials microstructure.
    Farizhandi AAK; Betancourt O; Mamivand M
    Sci Rep; 2022 Mar; 12(1):4552. PubMed ID: 35296736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PDE-LEARN: Using deep learning to discover partial differential equations from noisy, limited data.
    Stephany R; Earls C
    Neural Netw; 2024 Jun; 174():106242. PubMed ID: 38521016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MetaNO: How to Transfer Your Knowledge on Learning Hidden Physics.
    Zhang L; You H; Gao T; Yu M; Lee CH; Yu Y
    Comput Methods Appl Mech Eng; 2023 Dec; 417(Pt B):. PubMed ID: 38292246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis on Microstructure-Property Linkages of Filled Rubber Using Machine Learning and Molecular Dynamics Simulations.
    Kojima T; Washio T; Hara S; Koishi M; Amino N
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergent Spaces for Coupled Oscillators.
    Thiem TN; Kooshkbaghi M; Bertalan T; Laing CR; Kevrekidis IG
    Front Comput Neurosci; 2020; 14():36. PubMed ID: 32528268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-driven emergence of convolutional structure in neural networks.
    Ingrosso A; Goldt S
    Proc Natl Acad Sci U S A; 2022 Oct; 119(40):e2201854119. PubMed ID: 36161906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential convolutional neural network.
    Sarıgül M; Ozyildirim BM; Avci M
    Neural Netw; 2019 Aug; 116():279-287. PubMed ID: 31125914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning and Symbolic Regression for Discovering Parametric Equations.
    Zhang M; Kim S; Lu PY; Soljacic M
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; PP():. PubMed ID: 37721885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated Framework to Model Microstructure Evolution and Decipher the Microstructure-Property Relationship in Polymeric Porous Materials.
    Feng L; Huang S; Heo TW; Biener J
    ACS Appl Mater Interfaces; 2024 Jul; 16(29):38442-38457. PubMed ID: 39009042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning black- and gray-box chemotactic PDEs/closures from agent based Monte Carlo simulation data.
    Lee S; Psarellis YM; Siettos CI; Kevrekidis IG
    J Math Biol; 2023 Jun; 87(1):15. PubMed ID: 37341784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physics-informed attention-based neural network for hyperbolic partial differential equations: application to the Buckley-Leverett problem.
    Rodriguez-Torrado R; Ruiz P; Cueto-Felgueroso L; Green MC; Friesen T; Matringe S; Togelius J
    Sci Rep; 2022 May; 12(1):7557. PubMed ID: 35534639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning data-driven discretizations for partial differential equations.
    Bar-Sinai Y; Hoyer S; Hickey J; Brenner MP
    Proc Natl Acad Sci U S A; 2019 Jul; 116(31):15344-15349. PubMed ID: 31311866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LordNet: An efficient neural network for learning to solve parametric partial differential equations without simulated data.
    Huang X; Shi W; Gao X; Wei X; Zhang J; Bian J; Yang M; Liu TY
    Neural Netw; 2024 Aug; 176():106354. PubMed ID: 38723308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing SNNs and RNNs on neuromorphic vision datasets: Similarities and differences.
    He W; Wu Y; Deng L; Li G; Wang H; Tian Y; Ding W; Wang W; Xie Y
    Neural Netw; 2020 Dec; 132():108-120. PubMed ID: 32866745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.