These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34036288)

  • 21. Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.
    Lu X; Chen Y; Li X
    IEEE Trans Image Process; 2018 Jan.; 27(1):106-120. PubMed ID: 28952940
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mode decomposition evolution equations.
    Wang Y; Wei GW; Yang S
    J Sci Comput; 2012 Mar; 50(3):495-518. PubMed ID: 22408289
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep Learning Approaches to Surrogates for Solving the Diffusion Equation for Mechanistic Real-World Simulations.
    Toledo-Marín JQ; Fox G; Sluka JP; Glazier JA
    Front Physiol; 2021; 12():667828. PubMed ID: 34248661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification.
    Marini N; Otálora S; Müller H; Atzori M
    Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of atomic stress fields using cycle-consistent adversarial neural networks based on unpaired and unmatched sparse datasets.
    Buehler MJ
    Mater Adv; 2022 Aug; 3(15):6280-6290. PubMed ID: 35979503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High dimensional data driven statistical mechanics.
    Adachi Y; Sadamatsu S
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i4-i5. PubMed ID: 25359842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PDE-guided reservoir computing for image denoising with small data.
    Jeon J; Kim P; Jang B; Kim Y
    Chaos; 2021 Jul; 31(7):073103. PubMed ID: 34340316
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep learning based analysis of microstructured materials for thermal radiation control.
    Sullivan J; Mirhashemi A; Lee J
    Sci Rep; 2022 Jun; 12(1):9785. PubMed ID: 35697745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting ocean pressure field with a physics-informed neural network.
    Yoon S; Park Y; Gerstoft P; Seong W
    J Acoust Soc Am; 2024 Mar; 155(3):2037-2049. PubMed ID: 38477613
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detecting Microstructural Criticality/Degeneracy through Hybrid Learning Strategies Trained by Molecular Dynamics Simulations.
    Chen S; Xu N
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36757321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of Energetic Material Properties from Electronic Structure Using 3D Convolutional Neural Networks.
    Casey AD; Son SF; Bilionis I; Barnes BC
    J Chem Inf Model; 2020 Oct; 60(10):4457-4473. PubMed ID: 33054184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep convolutional neural networks for generating atomistic configurations of multi-component macromolecules from coarse-grained models.
    Christofi E; Chazirakis A; Chrysostomou C; Nicolaou MA; Li W; Doxastakis M; Harmandaris VA
    J Chem Phys; 2022 Nov; 157(18):184903. PubMed ID: 36379782
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of a Self-Supervised Machine Learning Method for Screening of Particulate Samples: A Case Study in Liquid Formulations.
    Salami H; Wang S; Skomski D
    J Pharm Sci; 2023 Mar; 112(3):771-778. PubMed ID: 36240862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X; Liang X; Deng L; Tan S; Xie Y
    Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physics-driven proper orthogonal decomposition: A simulation methodology for partial differential equations.
    Pulimeno A; Coates-Farley G; Veresko M; Jiang L; Cheng MC; Liu Y; Hou D
    MethodsX; 2023; 10():102204. PubMed ID: 37424764
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SDnDTI: Self-supervised deep learning-based denoising for diffusion tensor MRI.
    Tian Q; Li Z; Fan Q; Polimeni JR; Bilgic B; Salat DH; Huang SY
    Neuroimage; 2022 Jun; 253():119033. PubMed ID: 35240299
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Finding the optical properties of plasmonic structures by image processing using a combination of convolutional neural networks and recurrent neural networks.
    Sajedian I; Kim J; Rho J
    Microsyst Nanoeng; 2019; 5():27. PubMed ID: 31240107
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory.
    Oladyshkin S; Praditia T; Kroeker I; Mohammadi F; Nowak W; Otte S
    Neural Netw; 2023 Sep; 166():85-104. PubMed ID: 37480771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graph Convolution Networks with manifold regularization for semi-supervised learning.
    Kejani MT; Dornaika F; Talebi H
    Neural Netw; 2020 Jul; 127():160-167. PubMed ID: 32361546
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks.
    Yu H; Wu Z; Wang S; Wang Y; Ma X
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28672867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.