BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34036338)

  • 21. Energy production through organic fraction of municipal solid waste-A multiple regression modeling approach.
    Ramesh N; Ramesh S; Vennila G; Abdul Bari J; MageshKumar P
    Ecotoxicol Environ Saf; 2016 Dec; 134(Pt 2):350-357. PubMed ID: 26434708
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pilot-scale fermentation of urban food waste for volatile fatty acids production: The importance of pH.
    Yu P; Tu W; Wu M; Zhang Z; Wang H
    Bioresour Technol; 2021 Jul; 332():125116. PubMed ID: 33857863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dark fermentative volatile fatty acids production from food waste: A review of the potential central role in waste biorefineries.
    Asunis F; Cappai G; Carucci A; De Gioannis G; Dessì P; Muntoni A; Polettini A; Pomi R; Rossi A; Spiga D; Trois C
    Waste Manag Res; 2022 Nov; 40(11):1571-1593. PubMed ID: 35796574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Valorisation of industrial hemp (Cannabis sativa L.) biomass residues through acidogenic fermentation and co-fermentation for volatile fatty acids production.
    Moscariello C; Matassa S; Pirozzi F; Esposito G; Papirio S
    Bioresour Technol; 2022 Jul; 355():127289. PubMed ID: 35545211
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A hybrid dry-fermentation and membrane contactor system: Enhanced volatile fatty acid (VFA) production and recovery from organic solid wastes.
    Yesil H; Calli B; Tugtas AE
    Water Res; 2021 Mar; 192():116831. PubMed ID: 33485265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Volatile fatty acids production from sewage organic matter by combined bioflocculation and anaerobic fermentation.
    Khiewwijit R; Keesman KJ; Rijnaarts H; Temmink H
    Bioresour Technol; 2015 Oct; 193():150-5. PubMed ID: 26133471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids.
    Vajpeyi S; Chandran K
    Bioresour Technol; 2015; 188():49-55. PubMed ID: 25697838
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Utilization of food waste-derived volatile fatty acids for production of edible Rhizopus oligosporus fungal biomass.
    Wainaina S; Kisworini AD; Fanani M; Wikandari R; Millati R; Niklasson C; Taherzadeh MJ
    Bioresour Technol; 2020 Aug; 310():123444. PubMed ID: 32361197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery.
    Micolucci F; Gottardo M; Cavinato C; Pavan P; Bolzonella D
    Waste Manag; 2016 Feb; 48():227-235. PubMed ID: 26427935
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of Organic Loading Rate in Volatile Fatty Acids Production and Population Dynamics Using Microalgae Biomass as Substrate.
    Magdalena JA; Greses S; González-Fernández C
    Sci Rep; 2019 Dec; 9(1):18374. PubMed ID: 31804573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective.
    Bhatia SK; Otari SV; Jeon JM; Gurav R; Choi YK; Bhatia RK; Pugazhendhi A; Kumar V; Rajesh Banu J; Yoon JJ; Choi KY; Yang YH
    Bioresour Technol; 2021 Apr; 326():124733. PubMed ID: 33494006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment.
    Yin J; Wang K; Yang Y; Shen D; Wang M; Mo H
    Bioresour Technol; 2014 Nov; 171():323-9. PubMed ID: 25218204
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The inhibitory effect of thiosulfinate on volatile fatty acid and hydrogen production from anaerobic co-fermentation of food waste and waste activated sludge.
    Tao Z; Yang Q; Yao F; Huang X; Wu Y; Du M; Chen S; Liu X; Li X; Wang D
    Bioresour Technol; 2020 Feb; 297():122428. PubMed ID: 31786038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of initial total solids concentration on volatile fatty acid production from food waste during anaerobic acidification.
    Wang Q; Jiang J; Zhang Y; Li K
    Environ Technol; 2015; 36(13-16):1884-91. PubMed ID: 25666310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of pH control and concentration on microbial oil production from Chlorella vulgaris cultivated in the effluent of a low-cost organic waste fermentation system producing volatile fatty acids.
    Cho HU; Kim YM; Choi YN; Xu X; Shin DY; Park JM
    Bioresour Technol; 2015 May; 184():245-250. PubMed ID: 25280600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Continuous waste activated sludge and food waste co-fermentation for synchronously recovering vivianite and volatile fatty acids at different sludge retention times: Performance and microbial response.
    Wu Y; Cao J; Zhang Q; Xu R; Fang F; Feng Q; Li C; Xue Z; Luo J
    Bioresour Technol; 2020 Oct; 313():123610. PubMed ID: 32504871
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Food waste-derived volatile fatty acids platform using an immersed membrane bioreactor.
    Wainaina S; Parchami M; Mahboubi A; Horváth IS; Taherzadeh MJ
    Bioresour Technol; 2019 Feb; 274():329-334. PubMed ID: 30529480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of different vegetable wastes on the performance of volatile fatty acids production by anaerobic fermentation.
    Zhang Q; Lu Y; Zhou X; Wang X; Zhu J
    Sci Total Environ; 2020 Dec; 748():142390. PubMed ID: 33113691
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste.
    Pavi S; Kramer LE; Gomes LP; Miranda LAS
    Bioresour Technol; 2017 Mar; 228():362-367. PubMed ID: 28094090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective separation of nutrients and volatile fatty acids from food wastes using electrodialysis and membrane contactor for resource valorization.
    Kotoka F; Gutierrez L; Verliefde A; Cornelissen E
    J Environ Manage; 2024 Mar; 354():120290. PubMed ID: 38367499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.