These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 34036338)

  • 41. Enhancement of acidogenic fermentation for volatile fatty acid production from food waste: Effect of redox potential and inoculum.
    Yin J; Yu X; Zhang Y; Shen D; Wang M; Long Y; Chen T
    Bioresour Technol; 2016 Sep; 216():996-1003. PubMed ID: 27343452
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microbial communities for valorizing biomass using the carboxylate platform to produce volatile fatty acids: A review.
    Holtzapple MT; Wu H; Weimer PJ; Dalke R; Granda CB; Mai J; Urgun-Demirtas M
    Bioresour Technol; 2022 Jan; 344(Pt B):126253. PubMed ID: 34728351
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Waste activated sludge fermentation: effect of solids retention time and biomass concentration.
    Yuan Q; Sparling R; Oleszkiewicz JA
    Water Res; 2009 Dec; 43(20):5180-6. PubMed ID: 19744692
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Increasing 2 -Bio- (H
    Hassan GK; Jones RJ; Massanet-Nicolau J; Dinsdale R; Abo-Aly MM; El-Gohary FA; Guwy A
    Waste Manag; 2021 Jun; 129():20-25. PubMed ID: 34020372
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Production of polyhydroxyalkanoates by halotolerant bacteria with volatile fatty acids from food waste as carbon source.
    Wang P; Chen XT; Qiu YQ; Liang XF; Cheng MM; Wang YJ; Ren LH
    Biotechnol Appl Biochem; 2020 May; 67(3):307-316. PubMed ID: 31702835
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways.
    Zhou M; Yan B; Wong JWC; Zhang Y
    Bioresour Technol; 2018 Jan; 248(Pt A):68-78. PubMed ID: 28693950
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Advanced treatment and valorization of food waste through staged fermentation and chain elongation.
    Wang Q; Yang N; Cai Y; Zhang G; Wu Y; Ma W; Fu C; Zhang P
    Bioresour Technol; 2023 Sep; 384():129286. PubMed ID: 37277004
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of enzymatic pretreatment on solubilization and volatile fatty acid production in fermentation of food waste.
    Kim HJ; Choi YG; Kim GD; Kim SH; Chung TH
    Water Sci Technol; 2005; 52(10-11):51-9. PubMed ID: 16459776
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recovery of mixed volatile fatty acids from anaerobically fermented organic wastes by vapor permeation membrane contactors.
    Aydin S; Yesil H; Tugtas AE
    Bioresour Technol; 2018 Feb; 250():548-555. PubMed ID: 29197778
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Bioproduction of volatile fatty acids from excess municipal sludge by multistage countercurrent fermentation].
    Guo L; Liu H; Li X; Du G; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2008 Jul; 24(7):1233-9. PubMed ID: 18837401
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ammonia recovery from acidogenic fermentation effluents using a gas-permeable membrane contactor.
    Serra-Toro A; Vinardell S; Astals S; Madurga S; Llorens J; Mata-Álvarez J; Mas F; Dosta J
    Bioresour Technol; 2022 Jul; 356():127273. PubMed ID: 35526718
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Implementing polyhydroxyalkanoates production to anaerobic digestion of organic fraction of municipal solid waste to diversify products and increase total energy recovery.
    Papa G; Pepè Sciarria T; Carrara A; Scaglia B; D'Imporzano G; Adani F
    Bioresour Technol; 2020 Dec; 318():124270. PubMed ID: 33099102
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of ultrasound pre-treatment on the amount of dissolved organic matter extracted from food waste.
    Jiang J; Gong C; Wang J; Tian S; Zhang Y
    Bioresour Technol; 2014 Mar; 155():266-71. PubMed ID: 24457300
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influences of volatile solid concentration, temperature and solid retention time for the hydrolysis of waste activated sludge to recover volatile fatty acids.
    Xiong H; Chen J; Wang H; Shi H
    Bioresour Technol; 2012 Sep; 119():285-92. PubMed ID: 22750494
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of pretreatment on acid fermentation of organic solid waste.
    Kim HJ; Choi YG; Kim DY; Kim DH; Chung TH
    Water Sci Technol; 2005; 52(1-2):153-60. PubMed ID: 16180422
    [TBL] [Abstract][Full Text] [Related]  

  • 56. VOLATILE FATTY ACIDS FROM ORGANIC WASTES AS NOVEL LOW-COST CARBON SOURCE FOR Yarrowia lipolytica.
    Llamas M; Tomás-Pejó E; González-Fernández C
    N Biotechnol; 2020 May; 56():123-129. PubMed ID: 31953202
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Anaerobic digestion of biowastes in India: Opportunities, challenges and research needs.
    Breitenmoser L; Gross T; Huesch R; Rau J; Dhar H; Kumar S; Hugi C; Wintgens T
    J Environ Manage; 2019 Apr; 236():396-412. PubMed ID: 30739045
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of high-pressure extruding pretreatment on MSW upgrading and hydrolysis enhancement.
    Xu S; Kong X; Liu J; Zhao K; Zhao G; Bahdolla A
    Waste Manag; 2016 Dec; 58():81-89. PubMed ID: 27424308
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selective VFA production potential from organic waste streams: Assessing temperature and pH influence.
    Garcia-Aguirre J; Aymerich E; González-Mtnez de Goñi J; Esteban-Gutiérrez M
    Bioresour Technol; 2017 Nov; 244(Pt 1):1081-1088. PubMed ID: 28851164
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Volatile Fatty Acid Production from Anaerobic Digestion of Organic Residues.
    Uludag-Demirer S; Liao W; Demirer GN
    Methods Mol Biol; 2019; 1995():357-367. PubMed ID: 31148138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.