These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 34036711)

  • 1. A robotized handheld smart tool for orthopedic surgery.
    Hung SS; Hsu AS; Ho TH; Chi CH; Yen PL
    Int J Med Robot; 2021 Oct; 17(5):e2289. PubMed ID: 34036711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contact Compliance Based Visual Feedback for Tool Alignment in Robot Assisted Bone Drilling.
    Yen PL; Chen YJ
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feed rate control in robotic bone drilling process.
    Boiadjiev T; Boiadjiev G; Delchev K; Chavdarov I; Kastelov R
    Proc Inst Mech Eng H; 2021 Mar; 235(3):273-280. PubMed ID: 33231113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MINARO HD: control and evaluation of a handheld, highly dynamic surgical robot.
    Vossel M; Müller M; Niesche A; Theisgen L; Radermacher K; de la Fuente M
    Int J Comput Assist Radiol Surg; 2021 Mar; 16(3):467-474. PubMed ID: 33484430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compact Bone Surgery Robot With a High-Resolution and High-Rigidity Remote Center of Motion Mechanism.
    Shim S; Ji D; Lee S; Choi H; Hong J
    IEEE Trans Biomed Eng; 2020 Sep; 67(9):2497-2506. PubMed ID: 31905127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force-Position Hybrid Compensation Control for Path Deviation in Robot-Assisted Bone Drilling.
    Li S; Zhong X; Yang Y; Qi X; Hu Y; Yang X
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research of the master-slave robot surgical system with the function of force feedback.
    Shi Y; Zhou C; Xie L; Chen Y; Jiang J; Zhang Z; Deng Z
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28513095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robot assisted navigated drilling for percutaneous pedicle screw placement: A preliminary animal study.
    Wang H; Zhou Y; Liu J; Han J; Xiang L
    Indian J Orthop; 2015; 49(4):452-7. PubMed ID: 26229168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis and optimization of bone machining for robotic orthopedic surgeries.
    Pell DJ; Soshi M
    Int J Med Robot; 2018 Aug; 14(4):e1910. PubMed ID: 29603572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experiments on robot-assisted navigated drilling and milling of bones for pedicle screw placement.
    Ortmaier T; Weiss H; Döbele S; Schreiber U
    Int J Med Robot; 2006 Dec; 2(4):350-63. PubMed ID: 17520654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Arrival of Robotics in Spine Surgery: A Review of the Literature.
    Ghasem A; Sharma A; Greif DN; Alam M; Maaieh MA
    Spine (Phila Pa 1976); 2018 Dec; 43(23):1670-1677. PubMed ID: 29672420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel passive/active hybrid robot for orthopaedic trauma surgery.
    Kuang S; Leung KS; Wang T; Hu L; Chui E; Liu W; Wang Y
    Int J Med Robot; 2012 Dec; 8(4):458-67. PubMed ID: 22791563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and control of an image-guided robot for spine surgery in a hybrid OR.
    Balicki M; Kyne S; Toporek G; Holthuizen R; Homan R; Popovic A; Burström G; Persson O; Edström E; Elmi-Terander A; Patriciu A
    Int J Med Robot; 2020 Aug; 16(4):e2108. PubMed ID: 32270913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A force-sensing surgical drill for real-time force feedback in robotic mastoidectomy.
    Chen Y; Goodridge A; Sahu M; Kishore A; Vafaee S; Mohan H; Sapozhnikov K; Creighton FX; Taylor RH; Galaiya D
    Int J Comput Assist Radiol Surg; 2023 Jul; 18(7):1167-1174. PubMed ID: 37171660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotic-Assisted Spinal Surgery: Current Generation Instrumentation and New Applications.
    Elswick CM; Strong MJ; Joseph JR; Saadeh Y; Oppenlander M; Park P
    Neurosurg Clin N Am; 2020 Jan; 31(1):103-110. PubMed ID: 31739920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRIGOS: a compact robot for image-guided orthopedic surgery.
    Brandt G; Zimolong A; Carrat L; Merloz P; Staudte HW; Lavallée S; Radermacher K; Rau G
    IEEE Trans Inf Technol Biomed; 1999 Dec; 3(4):252-60. PubMed ID: 10719475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Safety and accuracy of robot-assisted placement of pedicle screws compared to conventional free-hand technique: a systematic review and meta-analysis.
    Fatima N; Massaad E; Hadzipasic M; Shankar GM; Shin JH
    Spine J; 2021 Feb; 21(2):181-192. PubMed ID: 32976997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A "eye-in-body" integrated surgery robot system for stereotactic surgery.
    Li L; Wu J; Ding H; Wang G
    Int J Comput Assist Radiol Surg; 2019 Dec; 14(12):2123-2135. PubMed ID: 31317475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A New Micro-traumatic Laparoscopic Surgery Robot System].
    Su M; Wang J; Li Z; Luo Z; Yuan S; Chen G; Liao Z; He C
    Zhongguo Yi Liao Qi Xie Za Zhi; 2019 May; 43(3):165-169. PubMed ID: 31184070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis of randomized controlled trials.
    Gao S; Lv Z; Fang H
    Eur Spine J; 2018 Apr; 27(4):921-930. PubMed ID: 29032475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.