These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34036970)

  • 1. Dynamical time scales of friction dynamics in active microrheology of a model glass.
    Madanchi A; Yu JW; Lee WB; Rahimi Tabar MR; Rahbari SHE
    Soft Matter; 2021 May; 17(20):5162-5169. PubMed ID: 34036970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction: Dynamical time scales of friction dynamics in active microrheology of a model glass.
    Madanchi A; Yu JW; Lee WB; Tabar MRR; Rahbari SHE
    Soft Matter; 2021 May; 17(20):5259. PubMed ID: 34037065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active microrheology of a bulk metallic glass.
    Yu JW; Rahbari SHE; Kawasaki T; Park H; Lee WB
    Sci Adv; 2020 Jul; 6(29):eaba8766. PubMed ID: 32832632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microrheology of colloidal systems.
    Puertas AM; Voigtmann T
    J Phys Condens Matter; 2014 Jun; 26(24):243101. PubMed ID: 24848328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymptotic analysis of mode-coupling theory of active nonlinear microrheology.
    Gnann MV; Voigtmann T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011406. PubMed ID: 23005416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding Slow and Heterogeneous Dynamics in Model Supercooled Glass-Forming Liquids.
    Tah I; Mutneja A; Karmakar S
    ACS Omega; 2021 Mar; 6(11):7229-7239. PubMed ID: 33778237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autonomously revealing hidden local structures in supercooled liquids.
    Boattini E; Marín-Aguilar S; Mitra S; Foffi G; Smallenburg F; Filion L
    Nat Commun; 2020 Oct; 11(1):5479. PubMed ID: 33127927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Method to probe the pronounced growth of correlation lengths in active glass-forming liquids using an elongated probe.
    Mutneja A; Karmakar S
    Phys Rev E; 2023 Aug; 108(2):L022601. PubMed ID: 37723727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple length and time scales of dynamic heterogeneities in model glass-forming liquids: a systematic analysis of multi-point and multi-time correlations.
    Kim K; Saito S
    J Chem Phys; 2013 Mar; 138(12):12A506. PubMed ID: 23556757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation between concentration fluctuations and dynamical heterogeneities in binary glass-forming liquids: A molecular dynamics simulation study.
    Müller N; Vogel M
    J Chem Phys; 2019 Feb; 150(6):064502. PubMed ID: 30770017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glass Transition in Supercooled Liquids with Medium-Range Crystalline Order.
    Tah I; Sengupta S; Sastry S; Dasgupta C; Karmakar S
    Phys Rev Lett; 2018 Aug; 121(8):085703. PubMed ID: 30192617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On melting dynamics and the glass transition. I. Glassy aspects of melting dynamics.
    Krzakala F; Zdeborová L
    J Chem Phys; 2011 Jan; 134(3):034512. PubMed ID: 21261373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations.
    Qvist J; Schober H; Halle B
    J Chem Phys; 2011 Apr; 134(14):144508. PubMed ID: 21495765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft glassy rheology of supercooled molecular liquids.
    Zondervan R; Xia T; van der Meer H; Storm C; Kulzer F; van Saarloos W; Orrit M
    Proc Natl Acad Sci U S A; 2008 Apr; 105(13):4993-8. PubMed ID: 18362347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamical, structural and chemical heterogeneities in a binary metallic glass-forming liquid.
    Puosi F; Jakse N; Pasturel A
    J Phys Condens Matter; 2018 Apr; 30(14):145701. PubMed ID: 29465041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the nonlinear dynamics of driven particles in supercooled liquids in terms of an effective temperature.
    Schroer CF; Heuer A
    J Chem Phys; 2015 Dec; 143(22):224501. PubMed ID: 26671384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breaking Through the Glass Ceiling: Recent Experimental Approaches to Probe the Properties of Supercooled Liquids near the Glass Transition.
    Smith RS; Kay BD
    J Phys Chem Lett; 2012 Mar; 3(6):725-30. PubMed ID: 26286280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connecting relaxation time to a dynamical length scale in athermal active glass formers.
    Ghoshal D; Joy A
    Phys Rev E; 2020 Dec; 102(6-1):062605. PubMed ID: 33465951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics in inorganic glass-forming liquids by NMR spectroscopy.
    Sen S
    Prog Nucl Magn Reson Spectrosc; 2020 Feb; 116():155-176. PubMed ID: 32130956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic Dynamics of Supercooled Liquids from First Principles.
    Janssen LM; Reichman DR
    Phys Rev Lett; 2015 Nov; 115(20):205701. PubMed ID: 26613452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.