These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 34036989)
1. A facile aptasensor based on polydopamine nanospheres for high-sensitivity sensing of T-2 toxin. Guo T; Wang C; Zhou H; Zhang Y; Ma L; Wang S Anal Methods; 2021 Jun; 13(24):2654-2658. PubMed ID: 34036989 [TBL] [Abstract][Full Text] [Related]
2. Size-Dependent Modulation of Polydopamine Nanospheres on Smart Nanoprobes for Detection of Pathogenic Bacteria at Single-Cell Level and Imaging-Guided Photothermal Bactericidal Activity. Ye Y; Zheng L; Wu T; Ding X; Chen F; Yuan Y; Fan GC; Shen Y ACS Appl Mater Interfaces; 2020 Aug; 12(31):35626-35637. PubMed ID: 32657116 [TBL] [Abstract][Full Text] [Related]
3. A novel fluorescent biosensor for Adenosine Triphosphate detection based on the polydopamine nanospheres integrating with enzymatic recycling amplification. Ji X; Yi B; Xu Y; Zhao Y; Zhong H; Ding C Talanta; 2017 Jul; 169():8-12. PubMed ID: 28411826 [TBL] [Abstract][Full Text] [Related]
4. Copper nanoclusters/polydopamine nanospheres based fluorescence aptasensor for protein kinase activity determination. Wang M; Wang S; Su D; Su X Anal Chim Acta; 2018 Dec; 1035():184-191. PubMed ID: 30224138 [TBL] [Abstract][Full Text] [Related]
5. Aptamer/Polydopamine Nanospheres Nanocomplex for in Situ Molecular Sensing in Living Cells. Qiang W; Hu H; Sun L; Li H; Xu D Anal Chem; 2015 Dec; 87(24):12190-6. PubMed ID: 26556471 [TBL] [Abstract][Full Text] [Related]
6. A ternary heterostructure aptasensor based on metal-organic framework and polydopamine nanoparticles for fluorescent detection of sulfamethazine. Liang N; Shi B; Hu X; Li W; Huang X; Li Z; Zhang X; Zou X; Shi J Food Chem; 2024 Dec; 460(Pt 2):140570. PubMed ID: 39089022 [TBL] [Abstract][Full Text] [Related]
7. Sensitive fluorescence sensing of T4 polynucleotide kinase activity and inhibition based on DNA/polydopamine nanospheres platform. Cen Y; Deng WJ; Yu RQ; Chu X Talanta; 2018 Apr; 180():271-276. PubMed ID: 29332810 [TBL] [Abstract][Full Text] [Related]
8. A fluorescent biosensing platform based on the polydopamine nanospheres intergrating with Exonuclease III-assisted target recycling amplification. Qiang W; Wang X; Li W; Chen X; Li H; Xu D Biosens Bioelectron; 2015 Sep; 71():143-149. PubMed ID: 25897884 [TBL] [Abstract][Full Text] [Related]
9. A fluorescence aptasensor for the sensitive detection of T-2 toxin based on FRET by adjusting the surface electric potentials of UCNPs and MIL-101. Zhao X; Wang Y; Li J; Huo B; Huang H; Bai J; Peng Y; Li S; Han D; Ren S; Wang J; Gao Z Anal Chim Acta; 2021 May; 1160():338450. PubMed ID: 33894966 [TBL] [Abstract][Full Text] [Related]
10. A fluorescence aptasensor based on controlled zirconium-based MOFs for the highly sensitive detection of T-2 toxin. Zhao X; Wang Y; Li J; Huo B; Qin Y; Zhang J; Chen M; Peng Y; Bai J; Li S; Gao Z Spectrochim Acta A Mol Biomol Spectrosc; 2021 Oct; 259():119893. PubMed ID: 33989975 [TBL] [Abstract][Full Text] [Related]
11. Lateral flow immunoassay based on dual spectral-overlapped fluorescence quenching of polydopamine nanospheres for sensitive detection of sulfamethazine. Wang Z; Xing K; Ding N; Wang S; Zhang G; Lai W J Hazard Mater; 2022 Feb; 423(Pt B):127204. PubMed ID: 34555767 [TBL] [Abstract][Full Text] [Related]
12. Label-free fluorescence turn-on aptasensor for prostate-specific antigen sensing based on aggregation-induced emission-silica nanospheres. Kong RM; Zhang X; Ding L; Yang D; Qu F Anal Bioanal Chem; 2017 Sep; 409(24):5757-5765. PubMed ID: 28741111 [TBL] [Abstract][Full Text] [Related]
13. Ultrasensitive immunosensor for prostate specific antigen using biomimetic polydopamine nanospheres as an electrochemiluminescence superquencher and antibody carriers. Liu Y; Zhao Y; Zhu Z; Xing Z; Ma H; Wei Q Anal Chim Acta; 2017 Apr; 963():17-23. PubMed ID: 28335971 [TBL] [Abstract][Full Text] [Related]
14. Novel colorimetric aptasensor based on unmodified gold nanoparticle and ssDNA for rapid and sensitive detection of T-2 toxin. Zhang W; Wang Y; Nan M; Li Y; Yun J; Wang Y; Bi Y Food Chem; 2021 Jun; 348():129128. PubMed ID: 33516992 [TBL] [Abstract][Full Text] [Related]
15. A magnetite/PMAA nanospheres-targeting SERS aptasensor for tetracycline sensing using mercapto molecules embedded core/shell nanoparticles for signal amplification. Li H; Chen Q; Mehedi Hassan M; Chen X; Ouyang Q; Guo Z; Zhao J Biosens Bioelectron; 2017 Jun; 92():192-199. PubMed ID: 28214746 [TBL] [Abstract][Full Text] [Related]
16. G-quadruplex specific thioflavin T-based label-free fluorescence aptasensor for rapid detection of tetracycline. Dai Y; Zhang Y; Liao W; Wang W; Wu L Spectrochim Acta A Mol Biomol Spectrosc; 2020 Sep; 238():118406. PubMed ID: 32387918 [TBL] [Abstract][Full Text] [Related]
17. A novel gold nanostars-based fluorescent aptasensor for aflatoxin B1 detection. Wei M; Zhao F; Xie Y Talanta; 2020 Mar; 209():120599. PubMed ID: 31892078 [TBL] [Abstract][Full Text] [Related]
18. Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A. Guo Z; Ren J; Wang J; Wang E Talanta; 2011 Oct; 85(5):2517-21. PubMed ID: 21962677 [TBL] [Abstract][Full Text] [Related]
19. Chromium hydroxide nanoparticles-based fluorescent aptameric sensing for sensitive patulin detection: The significance of nanocrystal and morphology modulation. Li J; Li S; Li Z; Zhou Y; Jin P; Zhang F; Sun Q; Le T; Jirimutu Talanta; 2023 May; 257():124296. PubMed ID: 36758442 [TBL] [Abstract][Full Text] [Related]
20. A novel sandwich aptasensor for detecting T-2 toxin based on rGO-TEPA-Au@Pt nanorods with a dual signal amplification strategy. Zhong H; Yu C; Gao R; Chen J; Yu Y; Geng Y; Wen Y; He J Biosens Bioelectron; 2019 Nov; 144():111635. PubMed ID: 31513958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]