These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34037014)

  • 1. Structure of ice confined in silica nanopores.
    Mohammed S; Asgar H; Benmore CJ; Gadikota G
    Phys Chem Chem Phys; 2021 Jun; 23(22):12706-12717. PubMed ID: 34037014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freezing, melting and structure of ice in a hydrophilic nanopore.
    Moore EB; de la Llave E; Welke K; Scherlis DA; Molinero V
    Phys Chem Chem Phys; 2010 Apr; 12(16):4124-34. PubMed ID: 20379503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of Ice/Water Confined in Nanoporous Alumina.
    Suzuki Y; Steinhart M; Graf R; Butt HJ; Floudas G
    J Phys Chem B; 2015 Nov; 119(46):14814-20. PubMed ID: 26511073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel ice structures in carbon nanopores: pressure enhancement effect of confinement.
    Jazdzewska M; Sliwinska-Bartkowiak MM; Beskrovnyy AI; Vasilovskiy SG; Ting SW; Chan KY; Huang L; Gubbins KE
    Phys Chem Chem Phys; 2011 May; 13(19):9008-13. PubMed ID: 21451863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melting and crystallization of ice in partially filled nanopores.
    Solveyra EG; de la Llave E; Scherlis DA; Molinero V
    J Phys Chem B; 2011 Dec; 115(48):14196-204. PubMed ID: 21863824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of confinement on water properties in super-hydrophilic pores using MD simulations with the mW model.
    Sinha VK; Das CK
    J Mol Model; 2024 Sep; 30(10):345. PubMed ID: 39316190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High cubicity of D
    Dutta D; Bera AK; Maheshwari P; Kolay S; Yusuf SM; Pujari PK
    Phys Chem Chem Phys; 2022 May; 24(19):11872-11881. PubMed ID: 35510632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular simulation of the confined crystallization of ice in cement nanopore.
    Zhu X; Vandamme M; Jiang Z; Brochard L
    J Chem Phys; 2023 Oct; 159(15):. PubMed ID: 37850696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous Stability of Two-Dimensional Ice Confined in Hydrophobic Nanopores.
    Cao B; Xu E; Li T
    ACS Nano; 2019 Apr; 13(4):4712-4719. PubMed ID: 30892864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures.
    Johnston JC; Molinero V
    J Am Chem Soc; 2012 Apr; 134(15):6650-9. PubMed ID: 22452637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of confined ice nano structures at different levels of pore filling: a synchrotron based X-ray diffraction study.
    Thangswamy M; Maheshwari P; Dutta D; Bera AK; Singh MN; Sinha AK; Yusuf SM; Pujari PK
    Phys Chem Chem Phys; 2020 Jul; 22(25):14309-14317. PubMed ID: 32567617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Findings of Cp maximum at 233 K for the water within silica nanopores and very weak dependence of the Tmax on the pore size.
    Nagoe A; Kanke Y; Oguni M; Namba S
    J Phys Chem B; 2010 Nov; 114(44):13940-3. PubMed ID: 20961142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melting behavior of water in cylindrical pores: carbon nanotubes and silica glasses.
    Sliwinska-Bartkowiak M; Jazdzewska M; Huang LL; Gubbins KE
    Phys Chem Chem Phys; 2008 Aug; 10(32):4909-19. PubMed ID: 18688535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low temperature phase properties of water confined in mesoporous silica MCM-41: thermodynamic and neutron scattering study.
    Kittaka S; Takahara S; Matsumoto H; Wada Y; Satoh TJ; Yamaguchi T
    J Chem Phys; 2013 May; 138(20):204714. PubMed ID: 23742507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plastic ice in confined geometry: the evidence from neutron diffraction and NMR relaxation.
    Webber JB; Dore JC; Strange JH; Anderson R; Tohidi B
    J Phys Condens Matter; 2007 Oct; 19(41):415117. PubMed ID: 28192329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic and Kinetic Transitions of Liquids in Nanoconfinement.
    Sen S; Risbud SH; Bartl MH
    Acc Chem Res; 2020 Dec; 53(12):2869-2878. PubMed ID: 33186005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ice crystallization observed in highly supercooled confined water.
    Stefanutti E; Bove LE; Lelong G; Ricci MA; Soper AK; Bruni F
    Phys Chem Chem Phys; 2019 Feb; 21(9):4931-4938. PubMed ID: 30758013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freezing and melting of hydrogen confined in nanoporous silica.
    Kucheyev SO; Van Cleve E; Worsley MA
    J Phys Condens Matter; 2014 Jun; 26(22):225004. PubMed ID: 24823921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene confinement effects on melting/freezing point and structure and dynamics behavior of water.
    Foroutan M; Fatemi SM; Shokouh F
    J Mol Graph Model; 2016 May; 66():85-90. PubMed ID: 27041448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.