These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 34037258)

  • 61. Noncoplanar VMAT for Brain Metastases: A Plan Quality and Delivery Efficiency Comparison With Coplanar VMAT, IMRT, and CyberKnife.
    Zhang S; Yang R; Shi C; Li J; Zhuang H; Tian S; Wang J
    Technol Cancer Res Treat; 2019 Jan; 18():1533033819871621. PubMed ID: 31451059
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fully automated noncoplanar radiation therapy treatment planning.
    Huang C; Yang Y; Xing L
    Med Phys; 2021 Nov; 48(11):7439-7449. PubMed ID: 34519064
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Lung IMRT planning with automatic determination of beam angle configurations.
    Yuan L; Zhu W; Ge Y; Jiang Y; Sheng Y; Yin FF; Wu QJ
    Phys Med Biol; 2018 Jul; 63(13):135024. PubMed ID: 29846178
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A fast deep learning approach for beam orientation optimization for prostate cancer treated with intensity-modulated radiation therapy.
    Sadeghnejad Barkousaraie A; Ogunmolu O; Jiang S; Nguyen D
    Med Phys; 2020 Mar; 47(3):880-897. PubMed ID: 31868927
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Impact of dose calculation accuracy during optimization on lung IMRT plan quality.
    Li Y; Rodrigues A; Li T; Yuan L; Yin FF; Wu QJ
    J Appl Clin Med Phys; 2015 Jan; 16(1):5137. PubMed ID: 25679172
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Optimization of Fluence Map for CyberKnife Raster Scanning Intensity Modulated Radiotherapy.
    Akino Y; Shiomi H; Mabuchi N; Masai N; Oh RJ; Ogawa K
    Anticancer Res; 2023 Apr; 43(4):1637-1642. PubMed ID: 36974800
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy.
    Liang B; Li Y; Wei R; Guo B; Xu X; Liu B; Li J; Wu Q; Zhou F
    Phys Med Biol; 2018 Jan; 63(1):015034. PubMed ID: 29148432
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A simple geometric algorithm to predict optimal starting gantry angles using equiangular-spaced beams for intensity modulated radiation therapy of prostate cancer.
    Potrebko PS; McCurdy BM; Butler JB; El-Gubtan AS; Nugent Z
    Med Phys; 2007 Oct; 34(10):3951-61. PubMed ID: 17985640
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Multicriteria plan optimization in the hands of physicians: a pilot study in prostate cancer and brain tumors.
    Müller BS; Shih HA; Efstathiou JA; Bortfeld T; Craft D
    Radiat Oncol; 2017 Nov; 12(1):168. PubMed ID: 29110689
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Computerized triplet beam orientation optimization for MRI-guided Co-60 radiotherapy.
    Nguyen D; Thomas D; Cao M; O'Connor D; Lamb J; Sheng K
    Med Phys; 2016 Oct; 43(10):5667. PubMed ID: 27782726
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Improving IMRT-plan quality with MLC leaf position refinement post plan optimization.
    Niu Y; Zhang G; Berman BL; Parke WC; Yi B; Yu CX
    Med Phys; 2012 Aug; 39(8):5118-26. PubMed ID: 22894437
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Clinical evaluation of direct aperture optimization when applied to head-and-neck IMRT.
    Jones S; Williams M
    Med Dosim; 2008; 33(1):86-92. PubMed ID: 18262129
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Objective function based ranking method for selection of optimal beam angles in IMRT.
    Ramar N; Meher SR; Ranganathan V; Perumal B; Kumar P; Anto GJ; Etti SH
    Phys Med; 2020 Jan; 69():44-51. PubMed ID: 31816504
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Integrated multicriterial optimization of beam angles and intensity profiles for coplanar and noncoplanar head and neck IMRT and implications for VMAT.
    Voet PW; Breedveld S; Dirkx ML; Levendag PC; Heijmen BJ
    Med Phys; 2012 Aug; 39(8):4858-65. PubMed ID: 22894412
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Conversion of helical tomotherapy plans to step-and-shoot IMRT plans--Pareto front evaluation of plans from a new treatment planning system.
    Petersson K; Ceberg C; Engström P; Benedek H; Nilsson P; Knöös T
    Med Phys; 2011 Jun; 38(6):3130-8. PubMed ID: 21815387
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Beam commissioning and measurements validating the beam model in a new TPS that converts helical tomotherapy plans to step-and-shoot IMRT plans.
    Petersson K; Ceberg C; Engström P; Knöös T
    Med Phys; 2011 Jan; 38(1):40-6. PubMed ID: 21361173
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A novel and clinically useful dynamic conformal arc (DCA)-based VMAT planning technique for lung SBRT.
    Pokhrel D; Visak J; Sanford L
    J Appl Clin Med Phys; 2020 Jul; 21(7):29-38. PubMed ID: 32306530
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evaluation of a commercial biologically based IMRT treatment planning system.
    Semenenko VA; Reitz B; Day E; Qi XS; Miften M; Li XA
    Med Phys; 2008 Dec; 35(12):5851-60. PubMed ID: 19175141
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Feasibility Study of Beam Angle Optimization Based on Scripts in Automated-planning for Liver Cancer].
    Xiao H; Zhang Y; Ji W; Li T; Zhang J
    Zhongguo Yi Liao Qi Xie Za Zhi; 2023 Jul; 47(4):365-369. PubMed ID: 37580284
    [TBL] [Abstract][Full Text] [Related]  

  • 80. An error detection method for real-time EPID-based treatment delivery quality assurance.
    Alves VGL; Ahmed M; Aliotta E; Choi W; Siebers JV
    Med Phys; 2021 Feb; 48(2):569-578. PubMed ID: 33314247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.