These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34037381)

  • 1. Stoichiometric Doping of Highly Coupled Cu
    Lee M; Yang J; Lee H; Lee JI; Koirala AR; Park J; Jo H; Kim S; Park H; Kwak J; Yoo H; Huh W; Kang MS
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26330-26338. PubMed ID: 34037381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared optically active Cu
    Wang Y; Xia Y
    J Mater Chem B; 2020 Sep; 8(35):7921-7930. PubMed ID: 32756672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developments in Colloidal Synthesis of Cu
    Soosaimanickam A; Sridharan MB
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3659-3682. PubMed ID: 31748064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Greatly Enhanced Thermoelectric Performance of Flexible Cu
    Zuo X; Han X; Wang Z; Liu Y; Li J; Zhang M; Huang C; Cai K
    Nanomaterials (Basel); 2024 May; 14(11):. PubMed ID: 38869575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Largely Enhanced Thermoelectric Power Factor of Flexible Cu
    Zuo X; Han X; Lu Y; Liu Y; Wang Z; Li J; Cai K
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced Dual-Function Hollow Copper-Sulfide-Based Polyimide Composite Window Film Combining Near-Infrared Thermal Shielding and Organic Pollutants' Photodegradation.
    Liu X; Ma J; Shen J; Zhao J; Lu C; Tu G
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and Formation Mechanism of Colloidal Janus-Type Cu
    Xia C; van Oversteeg CHM; Bogaards VCL; Spanjersberg THM; Visser NL; Berends AC; Meeldijk JD; de Jongh PE; de Mello Donega C
    ACS Nano; 2021 Jun; 15(6):9987-9999. PubMed ID: 34110780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size Dependence of Doping by a Vacancy Formation Reaction in Copper Sulfide Nanocrystals.
    Elimelech O; Liu J; Plonka AM; Frenkel AI; Banin U
    Angew Chem Int Ed Engl; 2017 Aug; 56(35):10335-10340. PubMed ID: 28639731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly conductive Cu2-xS nanoparticle films through room-temperature processing and an order of magnitude enhancement of conductivity via electrophoretic deposition.
    Otelaja OO; Ha DH; Ly T; Zhang H; Robinson RD
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18911-20. PubMed ID: 25314692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical Interface Damping in Nonstoichiometric Semiconductor Plasmonic Nanocrystals: An Effect of the Surrounding Environment.
    Ghorai N; Ghosh HN
    Langmuir; 2022 May; 38(18):5339-5350. PubMed ID: 35491746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low polydispersed copper-sulfide nanocrystals derived from various Cu-alkyl amine complexes.
    Kuzuya T; Itoh K; Sumiyama K
    J Colloid Interface Sci; 2008 Mar; 319(2):565-71. PubMed ID: 18155227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge Transport Modulation in PbSe Nanocrystal Solids by Au
    Yang H; Wong E; Zhao T; Lee JD; Xin HL; Chi M; Fleury B; Tang HY; Gaulding EA; Kagan CR; Murray CB
    ACS Nano; 2018 Sep; 12(9):9091-9100. PubMed ID: 30148956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversified copper sulfide (Cu
    Sun S; Li P; Liang S; Yang Z
    Nanoscale; 2017 Aug; 9(32):11357-11404. PubMed ID: 28776056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-phase transition of a Cu
    Zhang Y; He S; Zhang Q; Zhang H; Zhou J; Yang X; Wei Q; Chen L
    Nanoscale; 2024 Jan; 16(3):1260-1271. PubMed ID: 38126257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances.
    Kriegel I; Rodríguez-Fernández J; Wisnet A; Zhang H; Waurisch C; Eychmüller A; Dubavik A; Govorov AO; Feldmann J
    ACS Nano; 2013 May; 7(5):4367-77. PubMed ID: 23570329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Engineering of Metal and Semiconductor Nanocrystal Assemblies and Their Optical and Electronic Devices.
    Choi YC; Lee J; Ng JJ; Kagan CR
    Acc Chem Res; 2023 Jul; 56(13):1791-1802. PubMed ID: 37342079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon-Encapsulated Copper Sulfide Leading to Enhanced Thermoelectric Properties.
    Chen X; Zhang H; Zhao Y; Liu WD; Dai W; Wu T; Lu X; Wu C; Luo W; Fan Y; Wang L; Jiang W; Chen ZG; Yang J
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22457-22463. PubMed ID: 31194506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase Tuning for Enhancing the Thermoelectric Performance of Solution-Synthesized Cu
    Yang M; Liu X; Zhang B; Chen Y; Wang H; Yu J; Wang G; Xu J; Zhou X; Han G
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39541-39549. PubMed ID: 34384212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytic acid-Cu
    Ren Q; Zhang X; Sheng Y; Yu N; Li M; Chen Z
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):2116-2126. PubMed ID: 37703681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable conversion of plasmonic Cu2-xS nanoparticles to Au2S by cation exchange and electron beam induced transformation of Cu2-xS-Au2S core/shell nanostructures.
    Wang X; Liu X; Zhu D; Swihart MT
    Nanoscale; 2014 Aug; 6(15):8852-7. PubMed ID: 24957012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.