These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 34037687)
1. A novel antibacterial peptide recognition algorithm based on BERT. Zhang Y; Lin J; Zhao L; Zeng X; Liu X Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34037687 [TBL] [Abstract][Full Text] [Related]
2. Comprehensive Assessment of BERT-Based Methods for Predicting Antimicrobial Peptides. Gao W; Zhao J; Gui J; Wang Z; Chen J; Yue Z J Chem Inf Model; 2024 Oct; 64(19):7772-7785. PubMed ID: 39316765 [TBL] [Abstract][Full Text] [Related]
3. [An antibacterial peptides recognition method based on BERT and Text-CNN]. Xu X; Yang C; Shu K; Yuan X; Li M; Zhu Y; Chen T Sheng Wu Gong Cheng Xue Bao; 2023 Apr; 39(4):1815-1824. PubMed ID: 37154341 [TBL] [Abstract][Full Text] [Related]
4. iAMP-Attenpred: a novel antimicrobial peptide predictor based on BERT feature extraction method and CNN-BiLSTM-Attention combination model. Xing W; Zhang J; Li C; Huo Y; Dong G Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38055840 [TBL] [Abstract][Full Text] [Related]
5. AMP-BERT: Prediction of antimicrobial peptide function based on a BERT model. Lee H; Lee S; Lee I; Nam H Protein Sci; 2023 Jan; 32(1):e4529. PubMed ID: 36461699 [TBL] [Abstract][Full Text] [Related]
6. iAMP-CA2L: a new CNN-BiLSTM-SVM classifier based on cellular automata image for identifying antimicrobial peptides and their functional types. Xiao X; Shao YT; Cheng X; Stamatovic B Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34086856 [TBL] [Abstract][Full Text] [Related]
7. Protein Language Models and Machine Learning Facilitate the Identification of Antimicrobial Peptides. Medina-Ortiz D; Contreras S; Fernández D; Soto-García N; Moya I; Cabas-Mora G; Olivera-Nappa Á Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201537 [TBL] [Abstract][Full Text] [Related]
8. EnAMP: A novel deep learning ensemble antibacterial peptide recognition algorithm based on multi-features. Zhuang J; Gao W; Su R J Bioinform Comput Biol; 2024 Feb; 22(1):2450001. PubMed ID: 38406833 [TBL] [Abstract][Full Text] [Related]
10. Comparison of deep learning models with simple method to assess the problem of antimicrobial peptides prediction. Lobanov MY; Slizen MV; Dovidchenko NV; Panfilov AV; Surin AA; Likhachev IV; Galzitskaya OV Mol Inform; 2024 May; 43(5):e202200181. PubMed ID: 36961202 [TBL] [Abstract][Full Text] [Related]
11. PepNet: an interpretable neural network for anti-inflammatory and antimicrobial peptides prediction using a pre-trained protein language model. Han J; Kong T; Liu J Commun Biol; 2024 Sep; 7(1):1198. PubMed ID: 39341947 [TBL] [Abstract][Full Text] [Related]
12. Ensemble-AMPPred: Robust AMP Prediction and Recognition Using the Ensemble Learning Method with a New Hybrid Feature for Differentiating AMPs. Lertampaiporn S; Vorapreeda T; Hongsthong A; Thammarongtham C Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33494403 [TBL] [Abstract][Full Text] [Related]
13. Extracting comprehensive clinical information for breast cancer using deep learning methods. Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032 [TBL] [Abstract][Full Text] [Related]
14. TeaTFactor: a prediction tool for tea plant transcription factors based on BERT. Tang Q; Xiang Y; Gao W; Zhu L; Xu Z; Li Y; Yue Z IEEE/ACM Trans Comput Biol Bioinform; 2024 Aug; PP():. PubMed ID: 39150804 [TBL] [Abstract][Full Text] [Related]
15. Bioactive Peptide Recognition Based on NLP Pre-Train Algorithm. Jiang L; Sun N; Zhang Y; Yu X; Liu X IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3809-3819. PubMed ID: 37815965 [TBL] [Abstract][Full Text] [Related]
16. AMPFinder: A computational model to identify antimicrobial peptides and their functions based on sequence-derived information. Yang S; Yang Z; Ni X Anal Biochem; 2023 Jul; 673():115196. PubMed ID: 37236434 [TBL] [Abstract][Full Text] [Related]
17. AMPpred-EL: An effective antimicrobial peptide prediction model based on ensemble learning. Lv H; Yan K; Guo Y; Zou Q; Hesham AE; Liu B Comput Biol Med; 2022 Jul; 146():105577. PubMed ID: 35576825 [TBL] [Abstract][Full Text] [Related]
18. Sense the moment: A highly sensitive antimicrobial activity predictor based on hydrophobic moment. Porto WF; Ferreira KCV; Ribeiro SM; Franco OL Biochim Biophys Acta Gen Subj; 2022 Mar; 1866(3):130070. PubMed ID: 34953809 [TBL] [Abstract][Full Text] [Related]
19. deepAMPNet: a novel antimicrobial peptide predictor employing AlphaFold2 predicted structures and a bi-directional long short-term memory protein language model. Zhao F; Qiu J; Xiang D; Jiao P; Cao Y; Xu Q; Qiao D; Xu H; Cao Y PeerJ; 2024; 12():e17729. PubMed ID: 39040937 [TBL] [Abstract][Full Text] [Related]
20. Machine Learning Accelerates De Novo Design of Antimicrobial Peptides. Yin K; Xu W; Ren S; Xu Q; Zhang S; Zhang R; Jiang M; Zhang Y; Xu D; Li R Interdiscip Sci; 2024 Jun; 16(2):392-403. PubMed ID: 38416364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]