These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34037687)

  • 21. De Novo Antimicrobial Peptide Design with Feedback Generative Adversarial Networks.
    Zervou MA; Doutsi E; Pantazis Y; Tsakalides P
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An efficient hybrid deep learning architecture for predicting short antimicrobial peptides.
    Nguyen QH; Nguyen-Vo TH; Do TTT; Nguyen BP
    Proteomics; 2024 Jul; 24(14):e2300382. PubMed ID: 38837544
    [TBL] [Abstract][Full Text] [Related]  

  • 23. AMPDeep: hemolytic activity prediction of antimicrobial peptides using transfer learning.
    Salem M; Keshavarzi Arshadi A; Yuan JS
    BMC Bioinformatics; 2022 Sep; 23(1):389. PubMed ID: 36163001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fuse feeds as one: cross-modal framework for general identification of AMPs.
    Zhang W; Xu Y; Wang A; Chen G; Zhao J
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37779248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides.
    Xu J; Li F; Leier A; Xiang D; Shen HH; Marquez Lago TT; Li J; Yu DJ; Song J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33774670
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TP-LMMSG: a peptide prediction graph neural network incorporating flexible amino acid property representation.
    Chen N; Yu J; Zhe L; Wang F; Li X; Wong KC
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38920345
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning.
    Barbosa-Santillán LI; Sánchez-Escobar JJ; Calixto-Romo MA; Barbosa-Santillán LF
    Comput Math Methods Med; 2016; 2016():1505261. PubMed ID: 27366202
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A transformer architecture based on BERT and 2D convolutional neural network to identify DNA enhancers from sequence information.
    Le NQK; Ho QT; Nguyen TT; Ou YY
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33539511
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sa-TTCA: An SVM-based approach for tumor T-cell antigen classification using features extracted from biological sequencing and natural language processing.
    Tran TO; Le NQK
    Comput Biol Med; 2024 May; 174():108408. PubMed ID: 38636332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relation classification via BERT with piecewise convolution and focal loss.
    Liu J; Duan X; Zhang R; Sun Y; Guan L; Lin B
    PLoS One; 2021; 16(9):e0257092. PubMed ID: 34506554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BioBERT: a pre-trained biomedical language representation model for biomedical text mining.
    Lee J; Yoon W; Kim S; Kim D; Kim S; So CH; Kang J
    Bioinformatics; 2020 Feb; 36(4):1234-1240. PubMed ID: 31501885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest.
    Bhadra P; Yan J; Li J; Fong S; Siu SWI
    Sci Rep; 2018 Jan; 8(1):1697. PubMed ID: 29374199
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predictive Recognition of DNA-binding Proteins Based on Pre-trained Language Model BERT.
    Ma Y; Pei Y; Li C
    J Bioinform Comput Biol; 2023 Dec; 21(6):2350028. PubMed ID: 38248912
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring effectiveness of ab-initio protein-protein docking methods on a novel antibacterial protein complex dataset.
    Zhang W; Meng Q; Tang J; Guo F
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33959764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PAMPred: A hierarchical evolutionary ensemble framework for identifying plant antimicrobial peptides.
    Wang Z; Meng J; Li H; Xia S; Wang Y; Luan Y
    Comput Biol Med; 2023 Nov; 166():107545. PubMed ID: 37806057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SensiMix: Sensitivity-Aware 8-bit index & 1-bit value mixed precision quantization for BERT compression.
    Piao T; Cho I; Kang U
    PLoS One; 2022; 17(4):e0265621. PubMed ID: 35436295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein fold recognition using the gradient boost algorithm.
    Jiao F; Xu J; Yu L; Schuurmans D
    Comput Syst Bioinformatics Conf; 2006; ():43-53. PubMed ID: 17369624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides.
    Gull S; Shamim N; Minhas F
    Comput Biol Med; 2019 Apr; 107():172-181. PubMed ID: 30831306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. BERT-based Ranking for Biomedical Entity Normalization.
    Ji Z; Wei Q; Xu H
    AMIA Jt Summits Transl Sci Proc; 2020; 2020():269-277. PubMed ID: 32477646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CAMP: a useful resource for research on antimicrobial peptides.
    Thomas S; Karnik S; Barai RS; Jayaraman VK; Idicula-Thomas S
    Nucleic Acids Res; 2010 Jan; 38(Database issue):D774-80. PubMed ID: 19923233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.