BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34037791)

  • 1. Integrating multiple references for single-cell assignment.
    Duan B; Chen S; Chen X; Zhu C; Tang C; Wang S; Gao Y; Fu S; Liu Q
    Nucleic Acids Res; 2021 Aug; 49(14):e80. PubMed ID: 34037791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data.
    Srinivasan S; Leshchyk A; Johnson NT; Korkin D
    RNA; 2020 Oct; 26(10):1303-1319. PubMed ID: 32532794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses.
    Wang J; Ma A; Chang Y; Gong J; Jiang Y; Qi R; Wang C; Fu H; Ma Q; Xu D
    Nat Commun; 2021 Mar; 12(1):1882. PubMed ID: 33767197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep embedded clustering with multiple objectives on scRNA-seq data.
    Li X; Zhang S; Wong KC
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scedar: A scalable Python package for single-cell RNA-seq exploratory data analysis.
    Zhang Y; Kim MS; Reichenberger ER; Stear B; Taylor DM
    PLoS Comput Biol; 2020 Apr; 16(4):e1007794. PubMed ID: 32339163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. WEDGE: imputation of gene expression values from single-cell RNA-seq datasets using biased matrix decomposition.
    Hu Y; Li B; Zhang W; Liu N; Cai P; Chen F; Qu K
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33834202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. dropClust: efficient clustering of ultra-large scRNA-seq data.
    Sinha D; Kumar A; Kumar H; Bandyopadhyay S; Sengupta D
    Nucleic Acids Res; 2018 Apr; 46(6):e36. PubMed ID: 29361178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variance-adjusted Mahalanobis (VAM): a fast and accurate method for cell-specific gene set scoring.
    Frost HR
    Nucleic Acids Res; 2020 Sep; 48(16):e94. PubMed ID: 32633778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating transcriptomic profiles from single-cell RNA sequencing data using nature-inspired compressed sensing.
    Yu Z; Bian C; Liu G; Zhang S; Wong KC; Li X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33855366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolving Transcriptomic Profiles From Single-Cell RNA-Seq Data Using Nature-Inspired Multiobjective Optimization.
    Li X; Zhang S; Wong KC
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2445-2458. PubMed ID: 32031947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iMAP: integration of multiple single-cell datasets by adversarial paired transfer networks.
    Wang D; Hou S; Zhang L; Wang X; Liu B; Zhang Z
    Genome Biol; 2021 Feb; 22(1):63. PubMed ID: 33602306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Independent component analysis based gene co-expression network inference (ICAnet) to decipher functional modules for better single-cell clustering and batch integration.
    Wang W; Tan H; Sun M; Han Y; Chen W; Qiu S; Zheng K; Wei G; Ni T
    Nucleic Acids Res; 2021 May; 49(9):e54. PubMed ID: 33619563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep generative modeling for single-cell transcriptomics.
    Lopez R; Regier J; Cole MB; Jordan MI; Yosef N
    Nat Methods; 2018 Dec; 15(12):1053-1058. PubMed ID: 30504886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning.
    Deng Y; Bao F; Dai Q; Wu LF; Altschuler SJ
    Nat Methods; 2019 Apr; 16(4):311-314. PubMed ID: 30886411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PseudoGA: cell pseudotime reconstruction based on genetic algorithm.
    Mondal PK; Saha US; Mukhopadhyay I
    Nucleic Acids Res; 2021 Aug; 49(14):7909-7924. PubMed ID: 34244782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies.
    Sun Z; Chen L; Xin H; Jiang Y; Huang Q; Cillo AR; Tabib T; Kolls JK; Bruno TC; Lafyatis R; Vignali DAA; Chen K; Ding Y; Hu M; Chen W
    Nat Commun; 2019 Apr; 10(1):1649. PubMed ID: 30967541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iterative single-cell multi-omic integration using online learning.
    Gao C; Liu J; Kriebel AR; Preissl S; Luo C; Castanon R; Sandoval J; Rivkin A; Nery JR; Behrens MM; Ecker JR; Ren B; Welch JD
    Nat Biotechnol; 2021 Aug; 39(8):1000-1007. PubMed ID: 33875866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data denoising with transfer learning in single-cell transcriptomics.
    Wang J; Agarwal D; Huang M; Hu G; Zhou Z; Ye C; Zhang NR
    Nat Methods; 2019 Sep; 16(9):875-878. PubMed ID: 31471617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.