BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34038367)

  • 1. Predicting RBP Binding Sites of RNA With High-Order Encoding Features and CNN-BLSTM Hybrid Model.
    Wang Z; Dai Q; Song J; Duan X; Yang H; Yang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2409-2419. PubMed ID: 34038367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks.
    Pan X; Rijnbeek P; Yan J; Shen HB
    BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of the RBP binding sites on lncRNAs using the high-order nucleotide encoding convolutional neural network.
    Zhang SW; Wang Y; Zhang XX; Wang JQ
    Anal Biochem; 2019 Oct; 583():113364. PubMed ID: 31323206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks.
    Pan X; Shen HB
    Bioinformatics; 2018 Oct; 34(20):3427-3436. PubMed ID: 29722865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep neural networks for inferring binding sites of RNA-binding proteins by using distributed representations of RNA primary sequence and secondary structure.
    Deng L; Liu Y; Shi Y; Zhang W; Yang C; Liu H
    BMC Genomics; 2020 Dec; 21(Suppl 13):866. PubMed ID: 33334313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRIP: predicting circRNA-RBP-binding sites using a codon-based encoding and hybrid deep neural networks.
    Zhang K; Pan X; Yang Y; Shen HB
    RNA; 2019 Dec; 25(12):1604-1615. PubMed ID: 31537716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepA-RBPBS: A hybrid convolution and recurrent neural network combined with attention mechanism for predicting RBP binding site.
    Du Z; Xiao X; Uversky VN
    J Biomol Struct Dyn; 2022 Jun; 40(9):4250-4258. PubMed ID: 33272122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Attention Based Neural Network for Predicting RNA-Protein Binding Sites.
    Wang X; Zhang M; Long C; Yao L; Zhu M
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1469-1479. PubMed ID: 36067103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An automated framework for evaluation of deep learning models for splice site predictions.
    Zabardast A; Tamer EG; Son YA; Yılmaz A
    Sci Rep; 2023 Jun; 13(1):10221. PubMed ID: 37353532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepPN: a deep parallel neural network based on convolutional neural network and graph convolutional network for predicting RNA-protein binding sites.
    Zhang J; Liu B; Wang Z; Lehnert K; Gahegan M
    BMC Bioinformatics; 2022 Jun; 23(1):257. PubMed ID: 35768792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AC-Caps: Attention Based Capsule Network for Predicting RBP Binding Sites of LncRNA.
    Song J; Tian S; Yu L; Xing Y; Yang Q; Duan X; Dai Q
    Interdiscip Sci; 2020 Dec; 12(4):414-423. PubMed ID: 32572768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EDLMFC: an ensemble deep learning framework with multi-scale features combination for ncRNA-protein interaction prediction.
    Wang J; Zhao Y; Gong W; Liu Y; Wang M; Huang X; Tan J
    BMC Bioinformatics; 2021 Mar; 22(1):133. PubMed ID: 33740884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein secondary structure prediction improved by recurrent neural networks integrated with two-dimensional convolutional neural networks.
    Guo Y; Wang B; Li W; Yang B
    J Bioinform Comput Biol; 2018 Oct; 16(5):1850021. PubMed ID: 30419785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNAProt: an efficient and feature-rich RNA binding protein binding site predictor.
    Uhl M; Tran VD; Heyl F; Backofen R
    Gigascience; 2021 Aug; 10(8):. PubMed ID: 34406415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRBPDL: Identification of circRNA-RBP interaction sites using an ensemble neural network approach.
    Niu M; Zou Q; Lin C
    PLoS Comput Biol; 2022 Jan; 18(1):e1009798. PubMed ID: 35051187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep learning framework for modeling structural features of RNA-binding protein targets.
    Zhang S; Zhou J; Hu H; Gong H; Chen L; Cheng C; Zeng J
    Nucleic Acids Res; 2016 Feb; 44(4):e32. PubMed ID: 26467480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRIECNN: Ensemble convolutional neural network and advanced feature extraction methods for the precise forecasting of circRNA-RBP binding sites.
    Lasantha D; Vidanagamachchi S; Nallaperuma S
    Comput Biol Med; 2024 May; 174():108466. PubMed ID: 38615462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. WVDL: Weighted Voting Deep Learning Model for Predicting RNA-Protein Binding Sites.
    Pan Z; Zhou S; Liu T; Liu C; Zang M; Wang Q
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3322-3328. PubMed ID: 37028092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRBSP:Prediction of CircRNA-RBP Binding Sites Based on Multimodal Intermediate Fusion.
    Liu N; Zhang Z; Wu Y; Wang Y; Liang Y
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):2898-2906. PubMed ID: 37130249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.