BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 34038432)

  • 1. Genomic GC content drifts downward in most bacterial genomes.
    Ely B
    PLoS One; 2021; 16(5):e0244163. PubMed ID: 34038432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GC-Content evolution in bacterial genomes: the biased gene conversion hypothesis expands.
    Lassalle F; Périan S; Bataillon T; Nesme X; Duret L; Daubin V
    PLoS Genet; 2015 Feb; 11(2):e1004941. PubMed ID: 25659072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GC-biased gene conversion links the recombination landscape and demography to genomic base composition: GC-biased gene conversion drives genomic base composition across a wide range of species.
    Mugal CF; Weber CC; Ellegren H
    Bioessays; 2015 Dec; 37(12):1317-26. PubMed ID: 26445215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GC-biased gene conversion and selection affect GC content in the Oryza genus (rice).
    Muyle A; Serres-Giardi L; Ressayre A; Escobar J; Glémin S
    Mol Biol Evol; 2011 Sep; 28(9):2695-706. PubMed ID: 21504892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Recombination on the Base Composition of Bacteria and Archaea.
    Bobay LM; Ochman H
    Mol Biol Evol; 2017 Oct; 34(10):2627-2636. PubMed ID: 28957503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of selection upon genomic GC-content in bacteria.
    Hildebrand F; Meyer A; Eyre-Walker A
    PLoS Genet; 2010 Sep; 6(9):e1001107. PubMed ID: 20838593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking high GC content to the repair of double strand breaks in prokaryotic genomes.
    Weissman JL; Fagan WF; Johnson PLF
    PLoS Genet; 2019 Nov; 15(11):e1008493. PubMed ID: 31703064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biased gene conversion and GC-content evolution in the coding sequences of reptiles and vertebrates.
    Figuet E; Ballenghien M; Romiguier J; Galtier N
    Genome Biol Evol; 2014 Dec; 7(1):240-50. PubMed ID: 25527834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid usage is asymmetrically biased in AT- and GC-rich microbial genomes.
    Bohlin J; Brynildsrud O; Vesth T; Skjerve E; Ussery DW
    PLoS One; 2013; 8(7):e69878. PubMed ID: 23922837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Across bacterial phyla, distantly-related genomes with similar genomic GC content have similar patterns of amino acid usage.
    Lightfield J; Fram NR; Ely B
    PLoS One; 2011 Mar; 6(3):e17677. PubMed ID: 21423704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the relationship between genomic GC Content and patterns of base usage, codon usage and amino acid usage in prokaryotes: similar GC content adopts similar compositional frequencies regardless of the phylogenetic lineages.
    Zhou HQ; Ning LW; Zhang HX; Guo FB
    PLoS One; 2014; 9(9):e107319. PubMed ID: 25255224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biased gene conversion and the evolution of mammalian genomic landscapes.
    Duret L; Galtier N
    Annu Rev Genomics Hum Genet; 2009; 10():285-311. PubMed ID: 19630562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recombination drives the evolution of GC-content in the human genome.
    Meunier J; Duret L
    Mol Biol Evol; 2004 Jun; 21(6):984-90. PubMed ID: 14963104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that mutation is universally biased towards AT in bacteria.
    Hershberg R; Petrov DA
    PLoS Genet; 2010 Sep; 6(9):e1001115. PubMed ID: 20838599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution.
    Birdsell JA
    Mol Biol Evol; 2002 Jul; 19(7):1181-97. PubMed ID: 12082137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple stochastic model describing genomic evolution over time of GC content in microbial symbionts.
    Bohlin J; Rose B; Brynildsrud O; Birgitte Freiesleben De Blasio
    J Theor Biol; 2020 Oct; 503():110389. PubMed ID: 32634385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon limitation drives GC content evolution of a marine bacterium in an individual-based genome-scale model.
    Hellweger FL; Huang Y; Luo H
    ISME J; 2018 May; 12(5):1180-1187. PubMed ID: 29330536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes.
    Hurst LD; Merchant AR
    Proc Biol Sci; 2001 Mar; 268(1466):493-7. PubMed ID: 11296861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytosine usage modulates the correlation between CDS length and CG content in prokaryotic genomes.
    Xia X; Wang H; Xie Z; Carullo M; Huang H; Hickey D
    Mol Biol Evol; 2006 Jul; 23(7):1450-4. PubMed ID: 16687416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Twisted signatures of GC-biased gene conversion embedded in an evolutionary stable karyotype.
    Mugal CF; Arndt PF; Ellegren H
    Mol Biol Evol; 2013 Jul; 30(7):1700-12. PubMed ID: 23564940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.