BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34038487)

  • 1. Versatile artificial mer operons in Escherichia coli towards whole cell biosensing and adsorption of mercury.
    Zhang NX; Guo Y; Li H; Yang XQ; Gao CX; Hui CY
    PLoS One; 2021; 16(5):e0252190. PubMed ID: 34038487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a bioavailable Hg(II) sensing system based on MerR-regulated visual pigment biosynthesis.
    Guo Y; Hui CY; Liu L; Chen MP; Huang HY
    Sci Rep; 2021 Jun; 11(1):13516. PubMed ID: 34188121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Cadmium Multiple-Signal Biosensing and Bioadsorption Systems Based on Artificial
    Guo Y; Hui CY; Zhang NX; Liu L; Li H; Zheng HJ
    Front Bioeng Biotechnol; 2021; 9():585617. PubMed ID: 33644011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailored bacteria tackling with environmental mercury: Inspired by natural mercuric detoxification operons.
    Hui CY; Ma BC; Hu SY; Wu C
    Environ Pollut; 2024 Jan; 341():123016. PubMed ID: 38008253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indigoidine biosynthesis triggered by the heavy metal-responsive transcription regulator: a visual whole-cell biosensor.
    Hui CY; Guo Y; Li LM; Liu L; Chen YT; Yi J; Zhang NX
    Appl Microbiol Biotechnol; 2021 Aug; 105(14-15):6087-6102. PubMed ID: 34291315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular inducer Hg2+ concentration is rate determining for the expression of the mercury-resistance operon in cells.
    Yu H; Chu L; Misra TK
    J Bacteriol; 1996 May; 178(9):2712-4. PubMed ID: 8626343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioluminescent sensors for detection of bioavailable Hg(II) in the environment.
    Selifonova O; Burlage R; Barkay T
    Appl Environ Microbiol; 1993 Sep; 59(9):3083-90. PubMed ID: 8215378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial resistances to inorganic mercury salts and organomercurials.
    Misra TK
    Plasmid; 1992 Jan; 27(1):4-16. PubMed ID: 1311113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organomercurial Lyase (MerB)-Mediated Demethylation Decreases Bacterial Methylmercury Resistance in the Absence of Mercuric Reductase (MerA).
    Krout IN; Scrimale T; Vorojeikina D; Boyd ES; Rand MD
    Appl Environ Microbiol; 2022 Mar; 88(6):e0001022. PubMed ID: 35138926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Use of a Mercury Biosensor to Evaluate the Bioavailability of Mercury-Thiol Complexes and Mechanisms of Mercury Uptake in Bacteria.
    Ndu U; Barkay T; Mason RP; Traore Schartup A; Al-Farawati R; Liu J; Reinfelder JR
    PLoS One; 2015; 10(9):e0138333. PubMed ID: 26371471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury Reduction and Methyl Mercury Degradation by the Soil Bacterium Xanthobacter autotrophicus Py2.
    Petrus AK; Rutner C; Liu S; Wang Y; Wiatrowski HA
    Appl Environ Microbiol; 2015 Nov; 81(22):7833-8. PubMed ID: 26341208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the operon responsible for broad-spectrum mercury resistance in Streptomyces lividans 1326.
    Brünker P; Rother D; Sedlmeier R; Klein J; Mattes R; Altenbuchner J
    Mol Gen Genet; 1996 Jun; 251(3):307-15. PubMed ID: 8676873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria.
    Ndu U; Barkay T; Schartup AT; Mason RP; Reinfelder JR
    Biodegradation; 2016 Feb; 27(1):29-36. PubMed ID: 26693726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of catabolite repression on the mer operon.
    Summers AO; Knight-Olliff L; Slater C
    J Bacteriol; 1982 Jan; 149(1):191-7. PubMed ID: 6274843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of Escherichia coli HB101 and Pseudomonas putida PpY101 harboring a recombinant plasmid with tandem insertion of the mercury resistance operon.
    Kurabayashi T; Iwasaki K; Uchiyama H; Nakamura K; Tanaka H; Yagi O
    Biosci Biotechnol Biochem; 1997 Jul; 61(7):1187-9. PubMed ID: 9255983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Molecular-Weight Thiols and Thioredoxins Are Important Players in Hg(II) Resistance in Thermus thermophilus HB27.
    Norambuena J; Wang Y; Hanson T; Boyd JM; Barkay T
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29150497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of internal standard method in recombinant luminescent bacteria test.
    Wang YZ; Li D; He M
    J Environ Sci (China); 2015 Sep; 35():128-134. PubMed ID: 26354701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical characterization of HgCl2-inducible polypeptides encoded by the mer operon of plasmid R100.
    Jackson WJ; Summers AO
    J Bacteriol; 1982 Aug; 151(2):962-70. PubMed ID: 6212579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a set of bacterial biosensors for simultaneously detecting arsenic and mercury in groundwater.
    Huang CW; Yang SH; Sun MW; Liao VH
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):10206-13. PubMed ID: 25697554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Sensitive Whole-Cell Mercury Biosensors for Environmental Monitoring.
    Zevallos-Aliaga D; De Graeve S; Obando-Chávez P; Vaccari NA; Gao Y; Peeters T; Guerra DG
    Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.