BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 34039974)

  • 1. Live-cell imaging reveals the spatiotemporal organization of endogenous RNA polymerase II phosphorylation at a single gene.
    Forero-Quintero LS; Raymond W; Handa T; Saxton MN; Morisaki T; Kimura H; Bertrand E; Munsky B; Stasevich TJ
    Nat Commun; 2021 May; 12(1):3158. PubMed ID: 34039974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization, Quantification, and Modeling of Endogenous RNA Polymerase II Phosphorylation at a Single-copy Gene in Living Cells.
    Forero-Quintero LS; Raymond W; Munsky B; Stasevich TJ
    Bio Protoc; 2022 Aug; 12(15):. PubMed ID: 36082371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Live imaging of transcription sites using an elongating RNA polymerase II-specific probe.
    Uchino S; Ito Y; Sato Y; Handa T; Ohkawa Y; Tokunaga M; Kimura H
    J Cell Biol; 2022 Feb; 221(2):. PubMed ID: 34854870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging transcription elongation dynamics by new technologies unveils the organization of initiation and elongation in transcription factories.
    Kimura H; Sato Y
    Curr Opin Cell Biol; 2022 Feb; 74():71-79. PubMed ID: 35183895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of RNA polymerase II activation by histone acetylation in single living cells.
    Stasevich TJ; Hayashi-Takanaka Y; Sato Y; Maehara K; Ohkawa Y; Sakata-Sogawa K; Tokunaga M; Nagase T; Nozaki N; McNally JG; Kimura H
    Nature; 2014 Dec; 516(7530):272-5. PubMed ID: 25252976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FUS binds the CTD of RNA polymerase II and regulates its phosphorylation at Ser2.
    Schwartz JC; Ebmeier CC; Podell ER; Heimiller J; Taatjes DJ; Cech TR
    Genes Dev; 2012 Dec; 26(24):2690-5. PubMed ID: 23249733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Molecule Nanoscopy Elucidates RNA Polymerase II Transcription at Single Genes in Live Cells.
    Li J; Dong A; Saydaminova K; Chang H; Wang G; Ochiai H; Yamamoto T; Pertsinidis A
    Cell; 2019 Jul; 178(2):491-506.e28. PubMed ID: 31155237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring transcriptional activity by RNA polymerase II in vitro using single molecule co-localization.
    Ly E; Goodrich JA; Kugel JF
    Methods; 2019 Apr; 159-160():45-50. PubMed ID: 30876965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards mapping the 3D genome through high speed single-molecule tracking of functional transcription factors in single living cells.
    Wollman AJM; Hedlund EG; Shashkova S; Leake MC
    Methods; 2020 Jan; 170():82-89. PubMed ID: 31252059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interaction of RNA polymerase II with the adenovirus-2 major late promoter is precluded by phosphorylation of the C-terminal domain of subunit IIa.
    Chesnut JD; Stephens JH; Dahmus ME
    J Biol Chem; 1992 May; 267(15):10500-6. PubMed ID: 1316903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring transcription dynamics in living cells using a photobleaching approach.
    Hochberg H; Brody Y; Shav-Tal Y
    Methods; 2017 May; 120():58-64. PubMed ID: 28434903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bypassing bleaching with fluxional fluorophores.
    Strack R
    Nat Methods; 2019 May; 16(5):357. PubMed ID: 31040423
    [No Abstract]   [Full Text] [Related]  

  • 13. The Dynamics of mRNA Turnover Revealed by Single-Molecule Imaging in Single Cells.
    Horvathova I; Voigt F; Kotrys AV; Zhan Y; Artus-Revel CG; Eglinger J; Stadler MB; Giorgetti L; Chao JA
    Mol Cell; 2017 Nov; 68(3):615-625.e9. PubMed ID: 29056324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA polymerase II accumulation in the promoter-proximal region of the dihydrofolate reductase and gamma-actin genes.
    Cheng C; Sharp PA
    Mol Cell Biol; 2003 Mar; 23(6):1961-7. PubMed ID: 12612070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7.
    Chapman RD; Heidemann M; Albert TK; Mailhammer R; Flatley A; Meisterernst M; Kremmer E; Eick D
    Science; 2007 Dec; 318(5857):1780-2. PubMed ID: 18079404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing.
    Ahn SH; Kim M; Buratowski S
    Mol Cell; 2004 Jan; 13(1):67-76. PubMed ID: 14731395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cap-specific m6A methyltransferase, PCIF1/CAPAM, is dynamically recruited to the gene promoter in a transcription-dependent manner.
    Sugita A; Kuruma S; Yanagisawa N; Ishiguro H; Kano R; Ohkuma Y; Hirose Y
    J Biochem; 2021 Oct; 170(2):203-213. PubMed ID: 33982754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How Single-Molecule Localization Microscopy Expanded Our Mechanistic Understanding of RNA Polymerase II Transcription.
    Hoboth P; Šebesta O; Hozák P
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34206594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Splicing-dependent RNA polymerase pausing in yeast.
    Alexander RD; Innocente SA; Barrass JD; Beggs JD
    Mol Cell; 2010 Nov; 40(4):582-93. PubMed ID: 21095588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirements for RNA polymerase II carboxyl-terminal domain for activated transcription of human retroviruses human T-cell lymphotropic virus I and HIV-1.
    Chun RF; Jeang KT
    J Biol Chem; 1996 Nov; 271(44):27888-94. PubMed ID: 8910388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.