These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 34040081)
1. Frequency domain measurements of melt pool recoil force using modal analysis. Cullom T; Lough C; Altese N; Bristow D; Landers R; Brown B; Hartwig T; Barnard A; Blough J; Johnson K; Kinzel E Sci Rep; 2021 May; 11(1):10959. PubMed ID: 34040081 [TBL] [Abstract][Full Text] [Related]
2. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes. Calta NP; Wang J; Kiss AM; Martin AA; Depond PJ; Guss GM; Thampy V; Fong AY; Weker JN; Stone KH; Tassone CJ; Kramer MJ; Toney MF; Van Buuren A; Matthews MJ Rev Sci Instrum; 2018 May; 89(5):055101. PubMed ID: 29864819 [TBL] [Abstract][Full Text] [Related]
3. Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed Fusion of SS316L. Ur Rehman A; Pitir F; Salamci MU Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771790 [TBL] [Abstract][Full Text] [Related]
4. Understanding Melt Pool Behavior of 316L Stainless Steel in Laser Powder Bed Fusion Additive Manufacturing. Zhang Z; Zhang T; Sun C; Karna S; Yuan L Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398900 [TBL] [Abstract][Full Text] [Related]
5. Transient Laser Energy Absorption, Co-axial Melt Pool Monitoring, and Relationship to Melt Pool Morphology. Lane B; Zhirnov I; Mekhontsev S; Grantham S; Ricker R; Rauniyar S; Chou K Addit Manuf; 2020 Dec; 36():. PubMed ID: 34141601 [TBL] [Abstract][Full Text] [Related]
6. In situ melt pool measurements for laser powder bed fusion using multi sensing and correlation analysis. Wang R; Garcia D; Kamath RR; Dou C; Ma X; Shen B; Choo H; Fezzaa K; Yu HZ; Kong ZJ Sci Rep; 2022 Aug; 12(1):13716. PubMed ID: 35962031 [TBL] [Abstract][Full Text] [Related]
7. Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing. Yeung H; Lane B; Fox J Addit Manuf; 2019 Dec; 30():. PubMed ID: 34141600 [TBL] [Abstract][Full Text] [Related]
8. Laser spot size and scaling laws for laser beam additive manufacturing. Weaver JS; Heigel JC; Lane BM J Mater Process Technol; 2022 Jan; 73():. PubMed ID: 36733901 [TBL] [Abstract][Full Text] [Related]
9. Measurements of melt pool geometry and cooling rates of individual laser traces on IN625 bare plates. Lane B; Heigel J; Ricker R; Zhirnov I; Khromschenko V; Weaver J; Phan T; Stoudt M; Mekhontsev S; Levine L Integr Mater Manuf Innov; 2020; 9(1):. PubMed ID: 34123701 [TBL] [Abstract][Full Text] [Related]
10. Assessing the influence of non-uniform gas speed on the melt pool depth in laser powder bed fusion additive manufacturing. Weaver JS; Schlenoff A; Deisenroth D; Moylan S Rapid Prototyp J; 2023 Aug; 29(8):. PubMed ID: 38486812 [TBL] [Abstract][Full Text] [Related]
11. Keyhole Formation by Laser Drilling in Laser Powder Bed Fusion of Ti6Al4V Biomedical Alloy: Mesoscopic Computational Fluid Dynamics Simulation versus Mathematical Modelling Using Empirical Validation. Ur Rehman A; Mahmood MA; Pitir F; Salamci MU; Popescu AC; Mihailescu IN Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947634 [TBL] [Abstract][Full Text] [Related]
12. Multiple Sensor Detection of Process Phenomena in Laser Powder Bed Fusion. Lane B; Whitenton E; Moylan S Proc SPIE Int Soc Opt Eng; 2016; 986104():. PubMed ID: 32165779 [TBL] [Abstract][Full Text] [Related]
13. Encoding Stability into Laser Powder Bed Fusion Monitoring Using Temporal Features and Pore Density Modelling. Booth BG; Heylen R; Nourazar M; Verhees D; Philips W; Bey-Temsamani A Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632151 [TBL] [Abstract][Full Text] [Related]
14. Laser Powder Bed Fusion (LPBF) of In718 and the Impact of Pre-Heating at 500 and 1000 °C: Operando Study. Ur Rehman A; Pitir F; Salamci MU Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772210 [TBL] [Abstract][Full Text] [Related]
15. The interplay between vapour, liquid, and solid phases in laser powder bed fusion. Bitharas I; Parab N; Zhao C; Sun T; Rollett AD; Moore AJ Nat Commun; 2022 May; 13(1):2959. PubMed ID: 35618737 [TBL] [Abstract][Full Text] [Related]
16. Accurate determination of laser spot position during laser powder bed fusion process thermography. Zhirnov I; Mekhontsev S; Lane B; Grantham S; Bura N Manuf Lett; 2020; 23():. PubMed ID: 32855904 [TBL] [Abstract][Full Text] [Related]
17. Characterizing the effects of laser control in laser powder bed fusion on near-surface pore formation via combined analysis of in-situ melt pool monitoring and X-ray computed tomography. Kim FH; Yeung H; Garboczi EJ Addit Manuf; 2021 Dec; 48(A):. PubMed ID: 36733468 [TBL] [Abstract][Full Text] [Related]
18. Review of Visual Measurement Methods for Metal Vaporization Processes in Laser Powder Bed Fusion. Liu J; Wei B; Chang H; Li J; Yang G Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512662 [TBL] [Abstract][Full Text] [Related]
19. A residual heat compensation based scan strategy for powder bed fusion additive manufacturing. Yeung H; Lane B Manuf Lett; 2020; 25():. PubMed ID: 34123726 [TBL] [Abstract][Full Text] [Related]
20. Continuous Comprehensive Monitoring of Melt Pool Morphology Under Realistic Printing Scenarios with Laser Powder Bed Fusion. Vallabh CKP; Zhao X 3D Print Addit Manuf; 2023 Feb; 10(1):101-110. PubMed ID: 36998791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]