These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34040116)

  • 1. In situ photografting during direct laser writing in thermoplastic microchannels.
    Han JY; Warshawsky S; DeVoe DL
    Sci Rep; 2021 May; 11(1):10980. PubMed ID: 34040116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser Direct Writing of Dual-Scale 3D Structures for Cell Repelling at High Cellular Density.
    Paun IA; Calin BS; Popescu RC; Tanasa E; Moldovan A
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two in One: Light as a Tool for 3D Printing and Erasing at the Microscale.
    Batchelor R; Messer T; Hippler M; Wegener M; Barner-Kowollik C; Blasco E
    Adv Mater; 2019 Oct; 31(40):e1904085. PubMed ID: 31420930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cucurbit[7]uril-Carbazole Two-Photon Photoinitiators for the Fabrication of Biocompatible Three-Dimensional Hydrogel Scaffolds by Laser Direct Writing in Aqueous Solutions.
    Zheng YC; Zhao YY; Zheng ML; Chen SL; Liu J; Jin F; Dong XZ; Zhao ZS; Duan XM
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):1782-1789. PubMed ID: 30608644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Submicron Patterns-on-a-Chip: Fabrication of a Microfluidic Device Incorporating 3D Printed Surface Ornaments.
    Nouri-Goushki M; Sharma A; Sasso L; Zhang S; Van der Eerden BCJ; Staufer U; Fratila-Apachitei LE; Zadpoor AA
    ACS Biomater Sci Eng; 2019 Nov; 5(11):6127-6136. PubMed ID: 33405666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass.
    Sugioka K; Xu J; Wu D; Hanada Y; Wang Z; Cheng Y; Midorikawa K
    Lab Chip; 2014 Sep; 14(18):3447-58. PubMed ID: 25012238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing.
    Do MT; Nguyen TT; Li Q; Benisty H; Ledoux-Rak I; Lai ND
    Opt Express; 2013 Sep; 21(18):20964-73. PubMed ID: 24103969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time monitoring of two-photon photopolymerization for use in fabrication of microfluidic devices.
    Stoneman M; Fox M; Zeng C; Raicu V
    Lab Chip; 2009 Mar; 9(6):819-27. PubMed ID: 19255664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid lithography: combining UV-exposure and two photon direct laser writing.
    Eschenbaum C; Großmann D; Dopf K; Kettlitz S; Bocksrocker T; Valouch S; Lemmer U
    Opt Express; 2013 Dec; 21(24):29921-6. PubMed ID: 24514543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtosecond laser direct generation of 3D-microfluidic channels inside bulk PMMA.
    Roth GL; Esen C; Hellmann R
    Opt Express; 2017 Jul; 25(15):18442-18450. PubMed ID: 28789329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Laser Writing of Four-Dimensional Structural Color Microactuators Using a Photonic Photoresist.
    Del Pozo M; Delaney C; Bastiaansen CWM; Diamond D; Schenning APHJ; Florea L
    ACS Nano; 2020 Aug; 14(8):9832-9839. PubMed ID: 32574044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Writing of Microfluidic Footpaths by Pyro-EHD Printing.
    Coppola S; Nasti G; Todino M; Olivieri F; Vespini V; Ferraro P
    ACS Appl Mater Interfaces; 2017 May; 9(19):16488-16494. PubMed ID: 28446020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leveraging on ENZ Metamaterials to Achieve 2D and 3D Hyper-Resolution in Two-Photon Direct Laser Writing.
    Lio GE; Ferraro A; Ritacco T; Aceti DM; De Luca A; Giocondo M; Caputo R
    Adv Mater; 2021 May; 33(18):e2008644. PubMed ID: 33783047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometric Determinants of In-Situ Direct Laser Writing.
    Lamont AC; Alsharhan AT; Sochol RD
    Sci Rep; 2019 Jan; 9(1):394. PubMed ID: 30674934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct laser writing for micro-optical devices using a negative photoresist.
    Tsutsumi N; Hirota J; Kinashi K; Sakai W
    Opt Express; 2017 Dec; 25(25):31539-31551. PubMed ID: 29245828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional large-scale microfluidic integration by laser ablation of interlayer connections.
    Huft J; Da Costa DJ; Walker D; Hansen CL
    Lab Chip; 2010 Sep; 10(18):2358-65. PubMed ID: 20539896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Channels Fabrication Based on Underwater Superpolymphobic Microgrooves Produced by Femtosecond Laser Direct Writing.
    Yong J; Zhan Z; Singh SC; Chen F; Guo C
    ACS Appl Polym Mater; 2019; 1(11):2819-2825. PubMed ID: 33283193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Calibration Method for the Resolution of 2D TPP Laser Direct Writing.
    Xie Y; Chen Y; Xu H; Chen J
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STED Direct Laser Writing of 45 nm Width Nanowire.
    He X; Li T; Zhang J; Wang Z
    Micromachines (Basel); 2019 Oct; 10(11):. PubMed ID: 31661815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bonding Strength of a Glass Microfluidic Device Fabricated by Femtosecond Laser Micromachining and Direct Welding.
    Kim S; Kim J; Joung YH; Choi J; Koo C
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30513880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.