These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34040135)

  • 1. Comparison between multi-walled carbon nanotubes and titanium dioxide nanoparticles as additives on performance of turbine meter oil nano lubricant.
    Pourpasha H; Zeinali Heris S; Mohammadfam Y
    Sci Rep; 2021 May; 11(1):11064. PubMed ID: 34040135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental comparison between ZnO and MoS
    Mousavi SB; Heris SZ; Estellé P
    Sci Rep; 2020 Apr; 10(1):5813. PubMed ID: 32242049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of TiO
    Birleanu C; Pustan M; Cioaza M; Molea A; Popa F; Contiu G
    Sci Rep; 2022 Mar; 12(1):5201. PubMed ID: 35338221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Cu, TiO2 Nanoparticles and Carbon Nano-Horns on Tribological Properties of Engine Oil.
    Zin V; Agresti F; Barison S; Colla L; Fabrizio M
    J Nanosci Nanotechnol; 2015 May; 15(5):3590-8. PubMed ID: 26504981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between thermophysical and tribological properties of two engine lubricant additives: electrochemically exfoliated graphene and molybdenum disulfide nanoplatelets.
    Guimarey MJG; Abdelkader AM; Comuñas MJP; Alvarez-Lorenzo C; Thomas B; Fernández J; Hadfield M
    Nanotechnology; 2021 Jan; 32(2):025701. PubMed ID: 32916677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cotransport of multi-walled carbon nanotubes and titanium dioxide nanoparticles in saturated porous media.
    Wang X; Cai L; Han P; Lin D; Kim H; Tong M
    Environ Pollut; 2014 Dec; 195():31-8. PubMed ID: 25194269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Nanocellulose-Copper (II) Oxide as Engine Oil Additives for Tribological Behavior Improvement.
    Hisham S; Kadirgama K; Mohammed HA; Kumar A; Ramasamy D; Samykano M; Rahman S
    Molecules; 2020 Jun; 25(13):. PubMed ID: 32605301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frictional Reduction with Partially Exfoliated Multi-Walled Carbon Nanotubes as Water-Based Lubricant Additives.
    Sun X; Zhao M; Han B; Kang H; Fan Z; Liu Y; Umar A; Guo Z
    J Nanosci Nanotechnol; 2018 May; 18(5):3427-3432. PubMed ID: 29442848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review of Friction Performance of Lubricants with Nano Additives.
    Waqas M; Zahid R; Bhutta MU; Khan ZA; Saeed A
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triple Function Lubricant Additives Based on Organic-Inorganic Hybrid Star Polymers: Friction Reduction, Wear Protection, and Viscosity Modification.
    van Ravensteijn BGP; Bou Zerdan R; Seo D; Cadirov N; Watanabe T; Gerbec JA; Hawker CJ; Israelachvili JN; Helgeson ME
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1363-1375. PubMed ID: 30525414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Friction reduction and viscosity modification of cellulose nanocrystals as biolubricant additives in polyalphaolefin oil.
    Li K; Zhang X; Du C; Yang J; Wu B; Guo Z; Dong C; Lin N; Yuan C
    Carbohydr Polym; 2019 Sep; 220():228-235. PubMed ID: 31196545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing the heat transfer characteristics of MWCNTs and TiO
    Javadpour R; Heris SZ; Mohammadfam Y; Mousavi SB
    Sci Rep; 2022 Sep; 12(1):15154. PubMed ID: 36071080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasmooth submicrometer carbon spheres as lubricant additives for friction and wear reduction.
    Alazemi AA; Etacheri V; Dysart AD; Stacke LE; Pol VG; Sadeghi F
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5514-21. PubMed ID: 25690952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano Serpentine Powders as Lubricant Additive: Tribological Behaviors and Self-Repairing Performance on Worn Surface.
    Wang B; Zhong Z; Qiu H; Chen D; Li W; Li S; Tu X
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32397564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tribological properties of nano-graphite as an additive in mixed oil-based titanium complex grease.
    Niu M; Qu J
    RSC Adv; 2018 Dec; 8(73):42133-42144. PubMed ID: 35558799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and Tribological Properties of a Multilayer Graphene-Reinforced TiO
    Wei YK; Dai LY; Zhong HC; Liao HF; Hou XB
    ACS Omega; 2022 Nov; 7(46):42242-42255. PubMed ID: 36440150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and Tribological Properties of Carbon-Coated WS
    Li Z; Meng F; Ding H; Wang W; Liu Q
    Materials (Basel); 2019 Sep; 12(17):. PubMed ID: 31484382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous effects of MWCNT and SiO2 on the rheological behavior of cooling oil and sensitivity analysis.
    Rejvani M; Heidari A; Seadodin S
    Heliyon; 2023 Feb; 9(2):e12942. PubMed ID: 36793971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TiO
    Weijie M; Chongnv W; Xuming P; Weixin J; Yuhang W; Benhui S
    Ecotoxicol Environ Saf; 2020 Jan; 187():109825. PubMed ID: 31677570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural Antioxidant Extracted Waste Cooking Oil as Sustainable Biolubricant Formulation in Tribological and Rheological Applications.
    Singh N; Agarwal P; Porwal SK
    Waste Biomass Valorization; 2022; 13(7):3127-3137. PubMed ID: 35251381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.