BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 34040494)

  • 1. Multitask learning and nonlinear optimal control of the COVID-19 outbreak: A geometric programming approach.
    Hayhoe M; Barreras F; Preciado VM
    Annu Rev Control; 2021; 52():495-507. PubMed ID: 34040494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of mobility based COVID-19 epidemic model using Federated Multitask Learning.
    Kumaresan M; Kumar MS; Muthukumar N
    Math Biosci Eng; 2022 Jul; 19(10):9983-10005. PubMed ID: 36031979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PaCAR: COVID-19 Pandemic Control Decision Making via Large-Scale Agent-Based Modeling and Deep Reinforcement Learning.
    Guo X; Chen P; Liang S; Jiao Z; Li L; Yan J; Huang Y; Liu Y; Fan W
    Med Decis Making; 2022 Nov; 42(8):1064-1077. PubMed ID: 35775610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the dynamics of COVID-19 pandemic with implementation of intervention strategies.
    Khajanchi S; Sarkar K; Banerjee S
    Eur Phys J Plus; 2022; 137(1):129. PubMed ID: 35070618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing two-dose vaccine resource allocation to combat a pandemic in the context of limited supply: The case of COVID-19.
    Zhu J; Wang Q; Huang M
    Front Public Health; 2023; 11():1129183. PubMed ID: 37168073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new SEAIRD pandemic prediction model with clinical and epidemiological data analysis on COVID-19 outbreak.
    Liu XX; Fong SJ; Dey N; Crespo RG; Herrera-Viedma E
    Appl Intell (Dordr); 2021; 51(7):4162-4198. PubMed ID: 34764574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modeling and optimal intervention strategies of the COVID-19 outbreak.
    Mondal J; Khajanchi S
    Nonlinear Dyn; 2022; 109(1):177-202. PubMed ID: 35125654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal control analysis of a multigroup SEAIHRD model for COVID-19 epidemic.
    Zong K; Luo C
    Risk Anal; 2023 Jan; 43(1):62-77. PubMed ID: 36100462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trade-Off between COVID-19 Pandemic Prevention and Control and Economic Stimulus.
    Liu F; Ma Z; Wang Z; Xie S
    Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36360836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond just "flattening the curve": Optimal control of epidemics with purely non-pharmaceutical interventions.
    Kantner M; Koprucki T
    J Math Ind; 2020; 10(1):23. PubMed ID: 32834921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear model predictive control with logic constraints for COVID-19 management.
    Péni T; Csutak B; Szederkényi G; Röst G
    Nonlinear Dyn; 2020; 102(4):1965-1986. PubMed ID: 33281298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating and Forecasting the COVID-19 Spread in a U.S. Metropolitan Region with a Spatial SEIR Model.
    Hatami F; Chen S; Paul R; Thill JC
    Int J Environ Res Public Health; 2022 Nov; 19(23):. PubMed ID: 36497846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trade-offs between mobility restrictions and transmission of SARS-CoV-2.
    Gösgens M; Hendriks T; Boon M; Steenbakkers W; Heesterbeek H; van der Hofstad R; Litvak N
    J R Soc Interface; 2021 Feb; 18(175):20200936. PubMed ID: 33622148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust optimal control of compartmental models in epidemiology: Application to the COVID-19 pandemic.
    Olivares A; Staffetti E
    Commun Nonlinear Sci Numer Simul; 2022 Aug; 111():106509. PubMed ID: 35437340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing an optimal sequence of non-pharmaceutical interventions for controlling COVID-19.
    Biswas D; Alfandari L
    Eur J Oper Res; 2022 Dec; 303(3):1372-1391. PubMed ID: 35382429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of human mobility restrictions on the spread of COVID-19 in Shenzhen, China: a modelling study using mobile phone data.
    Zhou Y; Xu R; Hu D; Yue Y; Li Q; Xia J
    Lancet Digit Health; 2020 Aug; 2(8):e417-e424. PubMed ID: 32835199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global analysis and prediction scenario of infectious outbreaks by recurrent dynamic model and machine learning models: A case study on COVID-19.
    Rakhshan SA; Nejad MS; Zaj M; Ghane FH
    Comput Biol Med; 2023 May; 158():106817. PubMed ID: 36989749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. COVID-19 healthcare demand and mortality in Sweden in response to non-pharmaceutical mitigation and suppression scenarios.
    Sjödin H; Johansson AF; Brännström Å; Farooq Z; Kriit HK; Wilder-Smith A; Åström C; Thunberg J; Söderquist M; Rocklöv J
    Int J Epidemiol; 2020 Oct; 49(5):1443-1453. PubMed ID: 32954400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convex output feedback model predictive control for mitigation of COVID-19 pandemic.
    Péni T; Szederkényi G
    Annu Rev Control; 2021; 52():543-553. PubMed ID: 34720662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel collocation method with a coronavirus optimization algorithm for the optimal control of COVID-19: A case study of Wuhan, China.
    Khanduzi R; Jajarmi A; Ebrahimzadeh A; Shahini M
    Comput Biol Med; 2024 May; 178():108680. PubMed ID: 38843571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.