These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34040674)

  • 1. Dependency analysis of frequency and strength of gamma oscillations on input difference between excitatory and inhibitory neurons.
    Gu X; Han F; Wang Z
    Cogn Neurodyn; 2021 Jun; 15(3):501-515. PubMed ID: 34040674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing the competition of gamma rhythms with delayed pulse-coupled oscillators in phase representation.
    Viriyopase A; Memmesheimer RM; Gielen S
    Phys Rev E; 2018 Aug; 98(2-1):022217. PubMed ID: 30253475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperation and competition of gamma oscillation mechanisms.
    Viriyopase A; Memmesheimer RM; Gielen S
    J Neurophysiol; 2016 Aug; 116(2):232-51. PubMed ID: 26912589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between the mechanisms of gamma rhythm generation and the magnitude of the macroscopic phase response function in a population of excitatory and inhibitory modified quadratic integrate-and-fire neurons.
    Akao A; Ogawa Y; Jimbo Y; Ermentrout GB; Kotani K
    Phys Rev E; 2018 Jan; 97(1-1):012209. PubMed ID: 29448391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new regime for highly robust gamma oscillation with co-exist of accurate and weak synchronization in excitatory-inhibitory networks.
    Wang Z; Fan H; Han F
    Cogn Neurodyn; 2014 Aug; 8(4):335-44. PubMed ID: 25009675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic Mechanisms of Tight Spike Synchrony at Gamma Frequency in Cerebral Cortex.
    Salkoff DB; Zagha E; Yüzgeç Ö; McCormick DA
    J Neurosci; 2015 Jul; 35(28):10236-51. PubMed ID: 26180200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane resonance enables stable and robust gamma oscillations.
    Moca VV; Nikolic D; Singer W; Mureşan RC
    Cereb Cortex; 2014 Jan; 24(1):119-42. PubMed ID: 23042733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empirically constrained network models for contrast-dependent modulation of gamma rhythm in V1.
    Zachariou M; Roberts MJ; Lowet E; De Weerd P; Hadjipapas A
    Neuroimage; 2021 Apr; 229():117748. PubMed ID: 33460798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholinergic modulation of neuronal excitability and recurrent excitation-inhibition in prefrontal cortex circuits: implications for gamma oscillations.
    Pafundo DE; Miyamae T; Lewis DA; Gonzalez-Burgos G
    J Physiol; 2013 Oct; 591(19):4725-48. PubMed ID: 23818693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic currents in anatomically identified CA3 neurons during hippocampal gamma oscillations in vitro.
    Oren I; Mann EO; Paulsen O; Hájos N
    J Neurosci; 2006 Sep; 26(39):9923-34. PubMed ID: 17005856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histamine H3 receptor activation decreases kainate-induced hippocampal gamma oscillations in vitro by action potential desynchronization in pyramidal neurons.
    Andersson R; Lindskog M; Fisahn A
    J Physiol; 2010 Apr; 588(Pt 8):1241-9. PubMed ID: 20156850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of gamma-oscillatory inhibition on the signal transmission of a cortical pyramidal neuron.
    Li X; Morita K; Robinson HP; Small M
    Cogn Neurodyn; 2011 Sep; 5(3):241-51. PubMed ID: 22942914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulating Cortical Oscillations in an Inhibition-Stabilized Network.
    Jadi MP; Sejnowski TJ
    Proc IEEE Inst Electr Electron Eng; 2014 Apr; 102(5):. PubMed ID: 24966414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-range synchronization of gamma and beta oscillations and the plasticity of excitatory and inhibitory synapses: a network model.
    Bibbig A; Traub RD; Whittington MA
    J Neurophysiol; 2002 Oct; 88(4):1634-54. PubMed ID: 12364494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic Cornu Ammonis Area 1 Theta-Nested Gamma Oscillations Induced by Optogenetic Theta Frequency Stimulation.
    Butler JL; Mendonça PR; Robinson HP; Paulsen O
    J Neurosci; 2016 Apr; 36(15):4155-69. PubMed ID: 27076416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How adaptation shapes spike rate oscillations in recurrent neuronal networks.
    Augustin M; Ladenbauer J; Obermayer K
    Front Comput Neurosci; 2013; 7():9. PubMed ID: 23450654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atorvastatin enhances kainate-induced gamma oscillations in rat hippocampal slices.
    Li C; Wang J; Zhao J; Wang Y; Liu Z; Guo FL; Wang XF; Vreugdenhil M; Lu CB
    Eur J Neurosci; 2016 Sep; 44(5):2236-46. PubMed ID: 27336700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges.
    Geisler C; Brunel N; Wang XJ
    J Neurophysiol; 2005 Dec; 94(6):4344-61. PubMed ID: 16093332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dichotomous Dynamics in E-I Networks with Strongly and Weakly Intra-connected Inhibitory Neurons.
    Rich S; Zochowski M; Booth V
    Front Neural Circuits; 2017; 11():104. PubMed ID: 29326558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulation of carbachol-driven rhythmic population oscillations in the CA3 region of the in vitro rat hippocampus.
    Traub RD; Miles R; Buzsáki G
    J Physiol; 1992; 451():653-72. PubMed ID: 1403830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.