These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34041039)

  • 41. CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field.
    Schaeffer SM; Nakata PA
    Plant Sci; 2015 Nov; 240():130-42. PubMed ID: 26475194
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamics of CRISPR/Cas9-mediated genomic editing of the
    Scharf I; Bierbaumer L; Huber H; Wittmann P; Haider C; Pirker C; Berger W; Mikulits W
    Oncol Lett; 2018 Feb; 15(2):2441-2450. PubMed ID: 29434956
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CRISPR/Cas9: A powerful genome editing technique for the treatment of cancer cells with present challenges and future directions.
    Hazafa A; Mumtaz M; Farooq MF; Bilal S; Chaudhry SN; Firdous M; Naeem H; Ullah MO; Yameen M; Mukhtiar MS; Zafar F
    Life Sci; 2020 Dec; 263():118525. PubMed ID: 33031826
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recent Advances in CRISPR/Cas9-Mediated Genome Editing in
    Muramoto T; Iriki H; Watanabe J; Kawata T
    Cells; 2019 Jan; 8(1):. PubMed ID: 30642074
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Virus-Based CRISPR/Cas9 Genome Editing in Plants.
    Liu H; Zhang B
    Trends Genet; 2020 Nov; 36(11):810-813. PubMed ID: 32828551
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications.
    Ma X; Zhu Q; Chen Y; Liu YG
    Mol Plant; 2016 Jul; 9(7):961-74. PubMed ID: 27108381
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In Vitro CRISPR/Cas9 System for Efficient Targeted DNA Editing.
    Liu Y; Tao W; Wen S; Li Z; Yang A; Deng Z; Sun Y
    mBio; 2015 Nov; 6(6):e01714-15. PubMed ID: 26556277
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Retraction: ECT2 Increases the Stability of EGFR and Tumorigenicity by Inhibiting Grb2 Ubiquitination in Pancreatic Cancer.
    Frontiers Editorial Office
    Front Oncol; 2021; 11():734761. PubMed ID: 34350126
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Retraction: OTUB2 facilitates tumorigenesis of gastric cancer through promoting KDM1A-mediated stem cell-like properties.
    Frontiers Editorial Office
    Front Oncol; 2023; 13():1209867. PubMed ID: 37287909
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Application Progress of CRISPR/Cas9 System for Gene Editing in Tumor Research].
    Liu C; Li Z; Zhang Y
    Zhongguo Fei Ai Za Zhi; 2015 Sep; 18(9):571-9. PubMed ID: 26383982
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Retraction: Ppm1b Negatively Regulates 3-Bromopyruvic Acid Induced Necroptosis in Breast Cancer Cells.
    Frontiers Editorial Office
    Front Oncol; 2021; 11():757083. PubMed ID: 34513719
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibition of histone deacetylase 1 (HDAC1) and HDAC2 enhances CRISPR/Cas9 genome editing.
    Liu B; Chen S; Rose A; Chen D; Cao F; Zwinderman M; Kiemel D; Aïssi M; Dekker FJ; Haisma HJ
    Nucleic Acids Res; 2020 Jan; 48(2):517-532. PubMed ID: 31799598
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Valproic Acid Significantly Improves CRISPR/Cas9-Mediated Gene Editing.
    Park H; Shin J; Choi H; Cho B; Kim J
    Cells; 2020 Jun; 9(6):. PubMed ID: 32532133
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Retraction: The role of LINC00284 in the development of thyroid cancer
    Frontiers Editorial Office
    Front Oncol; 2023; 13():1209909. PubMed ID: 37182166
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A glance at genome editing with CRISPR-Cas9 technology.
    Barman A; Deb B; Chakraborty S
    Curr Genet; 2020 Jun; 66(3):447-462. PubMed ID: 31691023
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Impact of Chromatin Dynamics on Cas9-Mediated Genome Editing in Human Cells.
    Daer RM; Cutts JP; Brafman DA; Haynes KA
    ACS Synth Biol; 2017 Mar; 6(3):428-438. PubMed ID: 27783893
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans.
    Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X
    Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Retraction: RORα Suppresses Epithelial-to-Mesenchymal Transition and Invasion in Human Gastric Cancer Cells via the Wnt/β-Catenin Pathway.
    Frontiers Editorial Office
    Front Oncol; 2020; 10():607586. PubMed ID: 33194774
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of microsatellite instability in CRISPR/Cas9 editing mice.
    Huo X; Du Y; Lu J; Guo M; Li Z; Zhang S; Li X; Chen Z; Du X
    Mutat Res; 2017 Mar; 797-799():1-6. PubMed ID: 28284774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.