BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34041265)

  • 1. Molecular Mechanics Study of Flow and Surface Influence in Ligand-Protein Association.
    Kaushik S; Chang CA
    Front Mol Biosci; 2021; 8():659687. PubMed ID: 34041265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ritonavir and xk263 Binding-Unbinding with HIV-1 Protease: Pathways, Energy and Comparison.
    Sun J; Raymundo MAV; Chang CA
    Life (Basel); 2022 Jan; 12(1):. PubMed ID: 35054509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gating and Intermolecular Interactions in Ligand-Protein Association: Coarse-Grained Modeling of HIV-1 Protease.
    Kang M; Roberts C; Cheng Y; Chang CE
    J Chem Theory Comput; 2011 Oct; 7(10):3438-46. PubMed ID: 26598172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of the Association Pathways for a Pair of Fast and Slow Binding Ligands of HIV-1 Protease.
    Huang YM; Raymundo MA; Chen W; Chang CA
    Biochemistry; 2017 Mar; 56(9):1311-1323. PubMed ID: 28060481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Switches of hydrogen bonds during ligand-protein association processes determine binding kinetics.
    Huang YM; Kang M; Chang CE
    J Mol Recognit; 2014 Sep; 27(9):537-48. PubMed ID: 25042708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding pathways of ligands to HIV-1 protease: coarse-grained and atomistic simulations.
    Chang CE; Trylska J; Tozzini V; McCammon JA
    Chem Biol Drug Des; 2007 Jan; 69(1):5-13. PubMed ID: 17313452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Ligand-Receptor Association and Intermediate Transfer Rates in Multienzyme Nanostructures with All-Atom Brownian Dynamics Simulations.
    Roberts CC; Chang CE
    J Phys Chem B; 2016 Aug; 120(33):8518-31. PubMed ID: 27248669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand Binding Pathways and Conformational Transitions of the HIV Protease.
    Miao Y; Huang YM; Walker RC; McCammon JA; Chang CA
    Biochemistry; 2018 Mar; 57(9):1533-1541. PubMed ID: 29394043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenanthridine derivatives as potential HIV-1 protease inhibitors.
    Ershov PV; Мezentsev YV; Kaluzhskiy LA; Ivanov AS
    Biomed Rep; 2020 Dec; 13(6):66. PubMed ID: 33149910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.
    Patching SG
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):43-55. PubMed ID: 23665295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvation influences flap collapse in HIV-1 protease.
    Meagher KL; Carlson HA
    Proteins; 2005 Jan; 58(1):119-25. PubMed ID: 15521062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-protein interactions as new targets for drug design: virtual and experimental approaches.
    Ivanov AS; Gnedenko OV; Molnar AA; Mezentsev YV; Lisitsa AV; Archakov AI
    J Bioinform Comput Biol; 2007 Apr; 5(2B):579-92. PubMed ID: 17636863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered zwitterionic phosphorylcholine monolayers for elucidating multivalent binding kinetics of C-reactive protein.
    Goda T; Miyahara Y
    Acta Biomater; 2016 Aug; 40():46-53. PubMed ID: 26873368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying binding hot spots on protein surfaces by mixed-solvent molecular dynamics: HIV-1 protease as a test case.
    Ung PM; Ghanakota P; Graham SE; Lexa KW; Carlson HA
    Biopolymers; 2016 Jan; 105(1):21-34. PubMed ID: 26385317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analysis of lead fullerene-based inhibitor bound to human immunodeficiency virus type 1 protease in solution from molecular dynamics simulations.
    Lee VS; Nimmanpipug P; Aruksakunwong O; Promsri S; Sompornpisut P; Hannongbua S
    J Mol Graph Model; 2007 Sep; 26(2):558-70. PubMed ID: 17468026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Dynamics in Mixed Solvents Reveals Protein-Ligand Interactions, Improves Docking, and Allows Accurate Binding Free Energy Predictions.
    Arcon JP; Defelipe LA; Modenutti CP; López ED; Alvarez-Garcia D; Barril X; Turjanski AG; Martí MA
    J Chem Inf Model; 2017 Apr; 57(4):846-863. PubMed ID: 28318252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ProMetCS: An Atomistic Force Field for Modeling Protein-Metal Surface Interactions in a Continuum Aqueous Solvent.
    Kokh DB; Corni S; Winn PJ; Hoefling M; Gottschalk KE; Wade RC
    J Chem Theory Comput; 2010 May; 6(5):1753-68. PubMed ID: 26615704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atypical protonation states in the active site of HIV-1 protease: a computational study.
    Czodrowski P; Sotriffer CA; Klebe G
    J Chem Inf Model; 2007; 47(4):1590-8. PubMed ID: 17503762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The binding of guanine-guanine mismatched DNA to naphthyridine dimer immobilized sensor surfaces: kinetic aspects.
    Nakatani K; Kobori A; Kumasawa H; Goto Y; Saito I
    Bioorg Med Chem; 2004 Jun; 12(12):3117-23. PubMed ID: 15158779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of detachment of specifically bound particles from surfaces by shear flow.
    Kuo SC; Hammer DA; Lauffenburger DA
    Biophys J; 1997 Jul; 73(1):517-31. PubMed ID: 9199814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.