These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34041961)

  • 1. The Frequency of Intermittently Scanned Glucose and Diurnal Variation of Glycemic Metrics.
    Hansen KW; Bibby BM
    J Diabetes Sci Technol; 2022 Nov; 16(6):1461-1465. PubMed ID: 34041961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Glycemic Metrics Measured Simultaneously by Intermittently Scanned Continuous Glucose Monitoring and Real-Time Continuous Glucose Monitoring in Pregnant Women with Type 1 Diabetes.
    Nørgaard SK; Mathiesen ER; Nørgaard K; Ringholm L
    Diabetes Technol Ther; 2021 Oct; 23(10):665-672. PubMed ID: 34086494
    [No Abstract]   [Full Text] [Related]  

  • 3. Glycemic Metrics Derived From Intermittently Scanned Continuous Glucose Monitoring.
    Hansen KW; Bibby BM
    J Diabetes Sci Technol; 2022 Jan; 16(1):113-119. PubMed ID: 33269634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benefits of a Switch from Intermittently Scanned Continuous Glucose Monitoring (isCGM) to Real-Time (rt) CGM in Diabetes Type 1 Suboptimal Controlled Patients in Real-Life: A One-Year Prospective Study
    Préau Y; Galie S; Schaepelynck P; Armand M; Raccah D
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Switching from Intermittently Scanned to Real-Time Continuous Glucose Monitoring Systems in a Type 1 Diabetes Patient French Cohort: An Observational Study of Clinical Practices.
    Préau Y; Armand M; Galie S; Schaepelynck P; Raccah D
    Diabetes Technol Ther; 2021 Apr; 23(4):259-267. PubMed ID: 33136439
    [No Abstract]   [Full Text] [Related]  

  • 6. Glucose Profiles Assessed by Intermittently Scanned Continuous Glucose Monitoring System during the Perioperative Period of Metabolic Surgery.
    Kim K; Choi SH; Jang HC; Park YS; Oh TJ
    Diabetes Metab J; 2022 Sep; 46(5):713-721. PubMed ID: 35067012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of divergent continuous glucose monitoring technologies on glycaemic control in type 1 diabetes mellitus: A systematic review and meta-analysis of randomised controlled trials.
    Elbalshy M; Haszard J; Smith H; Kuroko S; Galland B; Oliver N; Shah V; de Bock MI; Wheeler BJ
    Diabet Med; 2022 Aug; 39(8):e14854. PubMed ID: 35441743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early Initiation of Intermittently Scanned Continuous Glucose Monitoring in a Pediatric Population With Type 1 Diabetes: A Real World Study.
    Franceschi R; Cauvin V; Stefani L; Berchielli F; Soffiati M; Maines E
    Front Endocrinol (Lausanne); 2022; 13():907517. PubMed ID: 35784525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individualization of recommendations from the international consensus on continuous glucose monitoring-derived metrics in Japanese children and adolescents with type 1 diabetes.
    Urakami T; Yoshida K; Kuwabara R; Mine Y; Aoki M; Suzuki J; Morioka I
    Endocr J; 2020 Oct; 67(10):1055-1062. PubMed ID: 32565500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time In Range in Children with Type 1 Diabetes Using Treatment Strategies Based on Nonautomated Insulin Delivery Systems in the Real World.
    Cherubini V; Bonfanti R; Casertano A; De Nitto E; Iannilli A; Lombardo F; Maltoni G; Marigliano M; Bassi M; Minuto N; Mozzillo E; Rabbone I; Rapini N; Rigamonti A; Salzano G; Scaramuzza A; Schiaffini R; Tinti D; Toni S; Zagaroli L; Zucchini S; Maffeis C; Gesuita R
    Diabetes Technol Ther; 2020 Jul; 22(7):509-515. PubMed ID: 32073311
    [No Abstract]   [Full Text] [Related]  

  • 11. Glucose-lowering effects of 7-day treatment with SGLT2 inhibitor confirmed by intermittently scanned continuous glucose monitoring in outpatients with type 1 diabetes. A pilot study.
    Kurozumi A; Okada Y; Tanaka Y
    Endocr J; 2021 Mar; 68(3):361-369. PubMed ID: 33208570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of medium-term metrics for assessing glucose homoeostasis: Usefulness, strengths and weaknesses.
    Monnier L; Colette C; Owens D
    Diabetes Metab; 2021 Mar; 47(2):101173. PubMed ID: 32561428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flash Glucose Monitoring in Croatia: The Optimal Number of Scans per Day to Achieve Good Glycemic Control in Type 1 Diabetes.
    Canecki-Varzic S; Prpic-Krizevac I; Cigrovski Berkovic M; Rahelic D; Schonberger E; Gradiser M; Bilic-Curcic I
    Medicina (Kaunas); 2023 Oct; 59(11):. PubMed ID: 38003943
    [No Abstract]   [Full Text] [Related]  

  • 14. Impact of intermittently scanned continuous glucose monitoring on quality of life and glycaemic control in persons with type 1 diabetes: A 12-month follow-up study in real life.
    Duarte DB; Fonseca L; Santos T; Silva VB; Puga FM; Saraiva M; Silva IL; Teixeira S; Vilaverde J; Cardoso MH
    Diabetes Metab Syndr; 2022 Jun; 16(6):102509. PubMed ID: 35598543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictors of use and improvement in glycemic indices after initiating continuous glucose monitoring in real world: Data from Saudi Arabia.
    Alyusuf EY; Alharthi S; Alguwaihes AM; Jammah AA; Alfadda AA; Al-Sofiani ME
    Diabetes Metab Syndr; 2022 Feb; 16(2):102416. PubMed ID: 35150962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of intermittently scanned continuous glucose monitoring in young people with high-risk type 1 diabetes-Extension phase outcomes following a 6-month randomized control trial.
    Rose S; Styles SE; Wiltshire EJ; Stanley J; Galland BC; de Bock MI; Tomlinson PA; Rayns JA; MacKenzie KE; Wheeler BJ
    Diabet Med; 2022 May; 39(5):e14756. PubMed ID: 34862661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermittently Scanned Continuous Glucose Monitoring for Type 1 Diabetes.
    Leelarathna L; Evans ML; Neupane S; Rayman G; Lumley S; Cranston I; Narendran P; Barnard-Kelly K; Sutton CJ; Elliott RA; Taxiarchi VP; Gkountouras G; Burns M; Mubita W; Kanumilli N; Camm M; Thabit H; Wilmot EG;
    N Engl J Med; 2022 Oct; 387(16):1477-1487. PubMed ID: 36198143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of do-it-yourself real-time continuous glucose monitoring on psychological and glycemic variables in children with type 1 diabetes: A randomized crossover trial.
    Elbalshy MM; Styles S; Haszard JJ; Galland BC; Crocket H; Jefferies C; Wiltshire E; Tomlinson P; de Bock MI; Wheeler BJ
    Pediatr Diabetes; 2022 Jun; 23(4):480-488. PubMed ID: 35253331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lower Glycated Hemoglobin with Real-Time Continuous Glucose Monitoring Than with Intermittently Scanned Continuous Glucose Monitoring After 1 Year: The CORRIDA LIFE Study.
    Radovnická L; Hásková A; Do QD; Horová E; Navrátilová V; Mikeš O; Cihlář D; Parkin CG; Grunberger G; Prázný M; Šoupal J
    Diabetes Technol Ther; 2022 Dec; 24(12):859-867. PubMed ID: 36037056
    [No Abstract]   [Full Text] [Related]  

  • 20. Variation of glucose time in range in type 1 diabetes.
    Hansen KW; Bibby BM
    Endocrinol Diabetes Metab; 2022 Nov; 5(6):e379. PubMed ID: 36172887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.