Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

725 related articles for article (PubMed ID: 34042185)

  • 1. A clinical-radiomics model incorporating T2-weighted and diffusion-weighted magnetic resonance images predicts the existence of lymphovascular invasion / perineural invasion in patients with colorectal cancer.
    Zhang K; Ren Y; Xu S; Lu W; Xie S; Qu J; Wang X; Shen B; Pang P; Cai X; Sun J
    Med Phys; 2021 Sep; 48(9):4872-4882. PubMed ID: 34042185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Multimodal Radiomics Model for Preoperative Prediction of Lymphovascular Invasion in Rectal Cancer.
    Zhang Y; He K; Guo Y; Liu X; Yang Q; Zhang C; Xie Y; Mu S; Guo Y; Fu Y; Zhang H
    Front Oncol; 2020; 10():457. PubMed ID: 32328460
    [No Abstract]   [Full Text] [Related]  

  • 3. The value of
    Ma J; Guo D; Miao W; Wang Y; Yan L; Wu F; Zhang C; Zhang R; Zuo P; Yang G; Wang Z
    Abdom Radiol (NY); 2022 Apr; 47(4):1244-1254. PubMed ID: 35218381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preoperative prediction of lymphovascular and perineural invasion in gastric cancer using spectral computed tomography imaging and machine learning.
    Ge HT; Chen JW; Wang LL; Zou TX; Zheng B; Liu YF; Xue YJ; Lin WW
    World J Gastroenterol; 2024 Feb; 30(6):542-555. PubMed ID: 38463023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pretreatment MR-based radiomics nomogram as potential imaging biomarker for individualized assessment of perineural invasion status in rectal cancer.
    Chen J; Chen Y; Zheng D; Pang P; Zhang H; Zheng X; Liao J
    Abdom Radiol (NY); 2021 Mar; 46(3):847-857. PubMed ID: 32870349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preoperative prediction of perineural invasion of rectal cancer based on a magnetic resonance imaging radiomics model: A dual-center study.
    Liu Y; Sun BJ; Zhang C; Li B; Yu XX; Du Y
    World J Gastroenterol; 2024 Apr; 30(16):2233-2248. PubMed ID: 38690027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computed tomography-based radiomics nomogram for the preoperative prediction of perineural invasion in colorectal cancer: a multicentre study.
    Chen Q; Cui Y; Xue T; Peng H; Li M; Zhu X; Duan S; Gu H; Feng F
    Abdom Radiol (NY); 2022 Sep; 47(9):3251-3263. PubMed ID: 35960308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound radiomics-based nomogram to predict lymphovascular invasion in invasive breast cancer: a multicenter, retrospective study.
    Du Y; Cai M; Zha H; Chen B; Gu J; Zhang M; Liu W; Liu X; Liu X; Zong M; Li C
    Eur Radiol; 2024 Jan; 34(1):136-148. PubMed ID: 37518678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biparametric magnetic resonance imaging-based radiomics features for prediction of lymphovascular invasion in rectal cancer.
    Tong P; Sun D; Chen G; Ni J; Li Y
    BMC Cancer; 2023 Jan; 23(1):61. PubMed ID: 36650498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics.
    Liu Z; Feng B; Li C; Chen Y; Chen Q; Li X; Guan J; Chen X; Cui E; Li R; Li Z; Long W
    J Magn Reson Imaging; 2019 Sep; 50(3):847-857. PubMed ID: 30773770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiomics for predicting perineural invasion status in rectal cancer.
    Li M; Jin YM; Zhang YC; Zhao YL; Huang CC; Liu SM; Song B
    World J Gastroenterol; 2021 Sep; 27(33):5610-5621. PubMed ID: 34588755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Prediction of platinum-based chemotherapy sensitivity for epithelial ovarian cancer by multi-sequence MRI-based radiomic nomogram].
    Mao MM; Li HM; Shi J; Qiu QS; Feng F
    Zhonghua Yi Xue Za Zhi; 2022 Jan; 102(3):201-208. PubMed ID: 35042289
    [No Abstract]   [Full Text] [Related]  

  • 13. Additional value of metabolic parameters to PET/CT-based radiomics nomogram in predicting lymphovascular invasion and outcome in lung adenocarcinoma.
    Nie P; Yang G; Wang N; Yan L; Miao W; Duan Y; Wang Y; Gong A; Zhao Y; Wu J; Zhang C; Wang M; Cui J; Yu M; Li D; Sun Y; Wang Y; Wang Z
    Eur J Nucl Med Mol Imaging; 2021 Jan; 48(1):217-230. PubMed ID: 32451603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiparametric MRI-based radiomics nomogram for preoperative prediction of lymphovascular invasion and clinical outcomes in patients with breast invasive ductal carcinoma.
    Zhang J; Wang G; Ren J; Yang Z; Li D; Cui Y; Yang X
    Eur Radiol; 2022 Jun; 32(6):4079-4089. PubMed ID: 35050415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CT-based radiomics nomogram for the pre-operative prediction of lymphovascular invasion in colorectal cancer: a multicenter study.
    Li M; Gu H; Xue T; Peng H; Chen Q; Zhu X; Duan S; Feng F
    Br J Radiol; 2023 Jan; 96(1141):20220568. PubMed ID: 36318241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Tumor Perineural Invasion Status in High-Grade Prostate Cancer Based on a Clinical-Radiomics Model Incorporating T2-Weighted and Diffusion-Weighted Magnetic Resonance Images.
    Zhang W; Zhang W; Li X; Cao X; Yang G; Zhang H
    Cancers (Basel); 2022 Dec; 15(1):. PubMed ID: 36612083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiparametric MRI-Based Radiomics Nomogram for Predicting Lymphovascular Space Invasion in Endometrial Carcinoma.
    Luo Y; Mei D; Gong J; Zuo M; Guo X
    J Magn Reson Imaging; 2020 Oct; 52(4):1257-1262. PubMed ID: 32315482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preoperative prediction of perineural invasion and lymphovascular invasion with CT radiomics in gastric cancer.
    He Y; Yang M; Hou R; Ai S; Nie T; Chen J; Hu H; Guo X; Liu Y; Yuan Z
    Eur J Radiol Open; 2024 Jun; 12():100550. PubMed ID: 38314183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MRI-Based Radiomics for Preoperative Prediction of Lymphovascular Invasion in Patients With Invasive Breast Cancer.
    Nijiati M; Aihaiti D; Huojia A; Abulizi A; Mutailifu S; Rouzi N; Dai G; Maimaiti P
    Front Oncol; 2022; 12():876624. PubMed ID: 35734595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning model based on enhanced CT radiomics for the preoperative prediction of lymphovascular invasion in esophageal squamous cell carcinoma.
    Wang Y; Bai G; Huang M; Chen W
    Front Oncol; 2024; 14():1308317. PubMed ID: 38549935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.