These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 34042305)
1. Assessing the geographic range of classical swine fever vaccinations by spatiotemporal modelling in Japan. Yang Y; Nishiura H Transbound Emerg Dis; 2022 Jul; 69(4):1880-1889. PubMed ID: 34042305 [TBL] [Abstract][Full Text] [Related]
2. Pig farm vaccination against classical swine fever reduces the risk of transmission from wild boar. Hayama Y; Sawai K; Yoshinori M; Yamaguchi E; Shimizu Y; Yamamoto T Prev Vet Med; 2022 Jan; 198():105554. PubMed ID: 34872007 [TBL] [Abstract][Full Text] [Related]
3. Estimation of infection risk on pig farms in infected wild boar areas-Epidemiological analysis for the reemergence of classical swine fever in Japan in 2018. Hayama Y; Shimizu Y; Murato Y; Sawai K; Yamamoto T Prev Vet Med; 2020 Feb; 175():104873. PubMed ID: 31896501 [TBL] [Abstract][Full Text] [Related]
4. Analysis of effective spatial range of oral vaccination against classical swine fever for wild boar. Hayama Y; Sawai K; Murato Y; Yamaguchi E; Kondo S; Yamamoto T Prev Vet Med; 2023 Dec; 221():106080. PubMed ID: 38029645 [TBL] [Abstract][Full Text] [Related]
5. Epidemiological analysis of classical swine fever in wild boars in Japan. Shimizu Y; Hayama Y; Murato Y; Sawai K; Yamaguchi E; Yamamoto T BMC Vet Res; 2021 May; 17(1):188. PubMed ID: 33975588 [TBL] [Abstract][Full Text] [Related]
6. Subgrouping and analysis of relationships between classical swine fever virus identified during the 2018-2020 epidemic in Japan by a novel approach using shared genomic variants. Yamamoto T; Sawai K; Nishi T; Fukai K; Kato T; Hayama Y; Murato Y; Shimizu Y; Yamaguchi E Transbound Emerg Dis; 2022 May; 69(3):1166-1177. PubMed ID: 33730417 [TBL] [Abstract][Full Text] [Related]
7. Understanding African Swine Fever infection dynamics in Sardinia using a spatially explicit transmission model in domestic pig farms. Mur L; Sánchez-Vizcaíno JM; Fernández-Carrión E; Jurado C; Rolesu S; Feliziani F; Laddomada A; Martínez-López B Transbound Emerg Dis; 2018 Feb; 65(1):123-134. PubMed ID: 28296281 [TBL] [Abstract][Full Text] [Related]
8. Basic reproduction number of African swine fever in wild boars ( Lim JS; Kim E; Ryu PD; Pak SI J Vet Sci; 2021 Sep; 22(5):e71. PubMed ID: 34553516 [TBL] [Abstract][Full Text] [Related]
9. Monitoring relative abundance index and age ratios of wild boar (Sus scrofa) in small scale population in Gifu prefecture, Japan during classical swine fever outbreak. Ikeda T; Asano M; Kuninaga N; Suzuki M J Vet Med Sci; 2020 Jun; 82(6):861-865. PubMed ID: 32435014 [TBL] [Abstract][Full Text] [Related]
10. Efficacy of Oral Vaccine against Classical Swine Fever in Wild Boar and Estimation of the Disease Dynamics in the Quantitative Approach. Bazarragchaa E; Isoda N; Kim T; Tetsuo M; Ito S; Matsuno K; Sakoda Y Viruses; 2021 Feb; 13(2):. PubMed ID: 33672749 [TBL] [Abstract][Full Text] [Related]
11. Exposure of extensively farmed wild boars (Sus scrofa scrofa) to selected pig pathogens in Greece. Marinou KA; Papatsiros VG; Gkotsopoulos EK; Odatzoglou PK; Athanasiou LV Vet Q; 2015 Jun; 35(2):97-101. PubMed ID: 25774434 [TBL] [Abstract][Full Text] [Related]
12. The potential negative impacts of the classical swine fever virus on wild boar population in Gifu prefecture, Japan. Ikeda T; Asano M; Suzuki M J Vet Med Sci; 2021 May; 83(5):846-849. PubMed ID: 33775990 [TBL] [Abstract][Full Text] [Related]
13. Toward better control of classical swine fever in wild boars: susceptibility of boar-pig hybrids to a recent Japanese isolate and effectiveness of a bait vaccine. Fukai K; Nishi T; Yamada M; Ikezawa M Vet Res; 2020 Jul; 51(1):96. PubMed ID: 32736657 [TBL] [Abstract][Full Text] [Related]
14. Transmission Dynamics of African Swine Fever Virus, South Korea, 2019. Yoo DS; Kim Y; Lee ES; Lim JS; Hong SK; Lee IS; Jung CS; Yoon HC; Wee SH; Pfeiffer DU; Fournié G Emerg Infect Dis; 2021 Jul; 27(7):1909-1918. PubMed ID: 34152953 [TBL] [Abstract][Full Text] [Related]
15. Simulating the spread of classical swine fever virus between a hypothetical wild-boar population and domestic pig herds in Denmark. Boklund A; Goldbach SG; Uttenthal A; Alban L Prev Vet Med; 2008 Jul; 85(3-4):187-206. PubMed ID: 18339438 [TBL] [Abstract][Full Text] [Related]
16. Efficient oral vaccination program against classical swine fever in wild boar population. Ikeda T; Higashide D; Suzuki T; Asano M Prev Vet Med; 2022 Aug; 205():105700. PubMed ID: 35772241 [TBL] [Abstract][Full Text] [Related]
17. Retrospective spatial analysis for African swine fever in endemic areas to assess interactions between susceptible host populations. Bosch J; Barasona JA; Cadenas-Fernández E; Jurado C; Pintore A; Denurra D; Cherchi M; Vicente J; Sánchez-Vizcaíno JM PLoS One; 2020; 15(5):e0233473. PubMed ID: 32469923 [TBL] [Abstract][Full Text] [Related]
18. Statistical Exploration of Local Transmission Routes for African Swine Fever in Pigs in the Russian Federation, 2007-2014. Vergne T; Gogin A; Pfeiffer DU Transbound Emerg Dis; 2017 Apr; 64(2):504-512. PubMed ID: 26192820 [TBL] [Abstract][Full Text] [Related]
19. Measuring impact of vaccination among wildlife: The case of bait vaccine campaigns for classical swine fever epidemic among wild boar in Japan. Matsuyama R; Yamamoto T; Hayama Y; Omori R PLoS Comput Biol; 2022 Oct; 18(10):e1010510. PubMed ID: 36201410 [TBL] [Abstract][Full Text] [Related]
20. Spatio-temporal Analysis of African Swine Fever in Sardinia (2012-2014): Trends in Domestic Pigs and Wild Boar. Iglesias I; Rodríguez A; Feliziani F; Rolesu S; de la Torre A Transbound Emerg Dis; 2017 Apr; 64(2):656-662. PubMed ID: 26392004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]