BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34042358)

  • 1. [Sea-land hydrological connectivity of coastal wetlands based on water salinity and hydrological structure.].
    Xu JY; Li YF; Qiu CQ; Liu HY; Zhou Y; Song QN; Wu H
    Ying Yong Sheng Tai Xue Bao; 2021 May; 32(5):1643-1652. PubMed ID: 34042358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on spatio-temporal variation and hydrological connectivity of tidal creek evolution in Yancheng coastal wetlands.
    Zhou S; Wang C; Li Y; Huang W; Jia Y; Wang Y; Xu W; Qiu C; Liu H
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):37143-37156. PubMed ID: 36571689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling hydrological effects of wetland restoration: a differentiated view.
    Staes J; Rubarenzya MH; Meire P; Willems P
    Water Sci Technol; 2009; 59(3):433-41. PubMed ID: 19213997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sizes of crab burrows regulate water-salt transport of tidal marsh wetlands.
    Xie L; Wang Y; Zhao S; Li Y; Zhou S; Zhang M; Zhang Z
    Mar Environ Res; 2022 Jul; 179():105691. PubMed ID: 35779401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive effects of groundwater level and salinity on soil respiration in coastal wetlands of a Chinese delta.
    Cui H; Bai J; Du S; Wang J; Keculah GN; Wang W; Zhang G; Jia J
    Environ Pollut; 2021 Oct; 286():117400. PubMed ID: 34058447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Quantitative assessment of surface hydrological connectivity in Momoge National Nature Reserve, Northeast China].
    Chen YQ; Wu LL; Zhang GX; Qiao SJ
    Ying Yong Sheng Tai Xue Bao; 2020 Nov; 31(11):3833-3841. PubMed ID: 33300734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study of typical plant growth changes in response to drainage water and salt in ditch wetland in arid area.
    Wang Q; Li S; Fei L; Wu M; Zheng R; Peng Y; Shen F
    Sci Total Environ; 2024 Feb; 912():169315. PubMed ID: 38128668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of seasonal variations in sea level on the salinity regime of a coastal groundwater-fed wetland.
    Wood C; Harrington GA
    Ground Water; 2015; 53(1):90-8. PubMed ID: 24571421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A framework to quantitatively assess the influence of land use and land cover on coastal wetland hydrological connectivity from a landscape resistance perspective.
    Man Y; Du J; Lian Z; Wang Q; Cui B
    Sci Total Environ; 2024 Apr; 922():171140. PubMed ID: 38395173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on the extraction method of coastal wetlands based on sentinel-2 data.
    Jie L; Wang J
    Mar Environ Res; 2024 Jun; 198():106429. PubMed ID: 38640689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrological connectivity and herbivores control the autochthonous producers of coastal salt marshes.
    Yin S; Bai J; Wang X; Wang X; Zhang G; Jia J; Li X; Liu X
    Mar Pollut Bull; 2020 Nov; 160():111638. PubMed ID: 32927182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fish utilisation of wetland nurseries with complex hydrological connectivity.
    Davis B; Johnston R; Baker R; Sheaves M
    PLoS One; 2012; 7(11):e49107. PubMed ID: 23152857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of Macrophyte Diversity in Coastal Lakes to Watershed Land Use and Salinity Gradient.
    Grzybowski M; Burandt P; Glińska-Lewczuk K; Lew S; Obolewski K
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying driving hydrogeomorphic factors of coastal wetland downgrading using random forest classification models.
    He K; Li W; Zhang Y; Sun G; McNulty SG; Flanagan NE; Richardson CJ
    Sci Total Environ; 2023 Oct; 894():164995. PubMed ID: 37343878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of wetland biodiversity based on the hydrological patterns and connectivity and its potential application in change detection and monitoring: A case study of the Sanjiang Plain, China.
    Qu Y; Zheng Y; Gong P; Shi J; Li L; Wang S; Luo C; Zhang H; Xu L
    Sci Total Environ; 2022 Jan; 805():150291. PubMed ID: 34818819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid deforestation of a coastal landscape driven by sea-level rise and extreme events.
    Ury EA; Yang X; Wright JP; Bernhardt ES
    Ecol Appl; 2021 Jul; 31(5):e02339. PubMed ID: 33817890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrological-niche models predict water plant functional group distributions in diverse wetland types.
    Deane DC; Nicol JM; Gehrig SL; Harding C; Aldridge KT; Goodman AM; Brookes JD
    Ecol Appl; 2017 Jun; 27(4):1351-1364. PubMed ID: 28263423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Centennial loss of lake wetlands in the Yangtze Plain, China: Impacts of land use changes accompanied by hydrological connectivity loss.
    Li B; Wan R; Yang G; Yang S; Dong L; Cui J; Zhang T
    Water Res; 2024 Jun; 256():121578. PubMed ID: 38608622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaling biodiversity responses to hydrological regimes.
    Rolls RJ; Heino J; Ryder DS; Chessman BC; Growns IO; Thompson RM; Gido KB
    Biol Rev Camb Philos Soc; 2018 May; 93(2):971-995. PubMed ID: 29115026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new framework combining hydrological connectivity metrics and morphological spatial pattern analysis for the hydrological connectivity evaluation of wetlands.
    Wei C; Wang X; Cai J; Liao Z; Li C; Liu Q
    Integr Environ Assess Manag; 2023 Jul; 19(4):1064-1078. PubMed ID: 36314691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.