BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34042717)

  • 21. Negation Detection for Clinical Text Mining in Russian.
    Funkner A; Balabaeva K; Kovalchuk S
    Stud Health Technol Inform; 2020 Jun; 270():342-346. PubMed ID: 32570403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Natural Language Processing for Automated Quantification of Brain Metastases Reported in Free-Text Radiology Reports.
    Senders JT; Karhade AV; Cote DJ; Mehrtash A; Lamba N; DiRisio A; Muskens IS; Gormley WB; Smith TR; Broekman MLD; Arnaout O
    JCO Clin Cancer Inform; 2019 Apr; 3():1-9. PubMed ID: 31002562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Essential Elements of Natural Language Processing: What the Radiologist Should Know.
    Chen PH
    Acad Radiol; 2020 Jan; 27(1):6-12. PubMed ID: 31537505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Feasibility of Automating Patient Acuity Measurement Using a Machine Learning Algorithm.
    Brennan CW; Meng F; Meterko MM; D'Avolio LW
    J Nurs Meas; 2016 Dec; 24(3):419-427. PubMed ID: 28714447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An automated data verification approach for improving data quality in a clinical registry.
    Tian Q; Liu M; Min L; An J; Lu X; Duan H
    Comput Methods Programs Biomed; 2019 Nov; 181():104840. PubMed ID: 30777618
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated identification of medical concepts and assertions in medical text.
    Rosales R; Farooq F; Krishnapuram B; Yu S; Fung G
    AMIA Annu Symp Proc; 2010 Nov; 2010():682-6. PubMed ID: 21347065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting.
    Le DV; Montgomery J; Kirkby KC; Scanlan J
    J Biomed Inform; 2018 Oct; 86():49-58. PubMed ID: 30118855
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records.
    Carson NJ; Mullin B; Sanchez MJ; Lu F; Yang K; Menezes M; Cook BL
    PLoS One; 2019; 14(2):e0211116. PubMed ID: 30779800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clinical Characteristics and Prognostic Factors for Intensive Care Unit Admission of Patients With COVID-19: Retrospective Study Using Machine Learning and Natural Language Processing.
    Izquierdo JL; Ancochea J; ; Soriano JB
    J Med Internet Res; 2020 Oct; 22(10):e21801. PubMed ID: 33090964
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proposal and evaluation of FASDIM, a Fast And Simple De-Identification Method for unstructured free-text clinical records.
    Chazard E; Mouret C; Ficheur G; Schaffar A; Beuscart JB; Beuscart R
    Int J Med Inform; 2014 Apr; 83(4):303-12. PubMed ID: 24370391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting Postoperative Hospital Stay in Neurosurgery with Recurrent Neural Networks Based on Operative Reports.
    Danilov G; Kotik K; Shifrin M; Strunina U; Pronkina T; Potapov A
    Stud Health Technol Inform; 2020 Jun; 270():382-386. PubMed ID: 32570411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrating Natural Language Processing and Machine Learning Algorithms to Categorize Oncologic Response in Radiology Reports.
    Chen PH; Zafar H; Galperin-Aizenberg M; Cook T
    J Digit Imaging; 2018 Apr; 31(2):178-184. PubMed ID: 29079959
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An unsupervised machine learning approach to segmentation of clinician-entered free text.
    Wrenn JO; Stetson PD; Johnson SB
    AMIA Annu Symp Proc; 2007 Oct; 2007():811-5. PubMed ID: 18693949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Machine Learning-Based Intelligent Scoring of College English Teaching in the Field of Natural Language Processing.
    Wang W
    Comput Intell Neurosci; 2022; 2022():2754626. PubMed ID: 35965747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of Natural Language Processing Rules-based and Machine-learning Systems to Identify Lumbar Spine Imaging Findings Related to Low Back Pain.
    Tan WK; Hassanpour S; Heagerty PJ; Rundell SD; Suri P; Huhdanpaa HT; James K; Carrell DS; Langlotz CP; Organ NL; Meier EN; Sherman KJ; Kallmes DF; Luetmer PH; Griffith B; Nerenz DR; Jarvik JG
    Acad Radiol; 2018 Nov; 25(11):1422-1432. PubMed ID: 29605561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinical Text Data Categorization and Feature Extraction Using Medical-Fissure Algorithm and Neg-Seq Algorithm.
    Pagad NS; N P; Almuzaini KK; Maheshwari M; Gangodkar D; Shukla P; Alhassan M
    Comput Intell Neurosci; 2022; 2022():5759521. PubMed ID: 35295284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ontologies, Knowledge Representation, and Machine Learning for Translational Research: Recent Contributions.
    Robinson PN; Haendel MA
    Yearb Med Inform; 2020 Aug; 29(1):159-162. PubMed ID: 32823310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A clinical text classification paradigm using weak supervision and deep representation.
    Wang Y; Sohn S; Liu S; Shen F; Wang L; Atkinson EJ; Amin S; Liu H
    BMC Med Inform Decis Mak; 2019 Jan; 19(1):1. PubMed ID: 30616584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diagnosis of Acute Poisoning using explainable artificial intelligence.
    Chary M; Boyer EW; Burns MM
    Comput Biol Med; 2021 Jul; 134():104469. PubMed ID: 34022488
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inter-labeler and intra-labeler variability of condition severity classification models using active and passive learning methods.
    Nissim N; Shahar Y; Elovici Y; Hripcsak G; Moskovitch R
    Artif Intell Med; 2017 Sep; 81():12-32. PubMed ID: 28456512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.