These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34042726)

  • 41. Automatic detection of major depressive disorder using electrodermal activity.
    Kim AY; Jang EH; Kim S; Choi KW; Jeon HJ; Yu HY; Byun S
    Sci Rep; 2018 Nov; 8(1):17030. PubMed ID: 30451895
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrodermal activity patient simulator.
    Geršak G; Drnovšek J
    PLoS One; 2020; 15(2):e0228949. PubMed ID: 32023317
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of Feature Selection Algorithm on Speech Emotion Recognition Using Deep Convolutional Neural Network.
    Farooq M; Hussain F; Baloch NK; Raja FR; Yu H; Zikria YB
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113907
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Learning-based classification of valence emotion from electroencephalography.
    Ramzan M; Dawn S
    Int J Neurosci; 2019 Nov; 129(11):1085-1093. PubMed ID: 31215829
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Does the Electrodermal System "Take Sides" When It Comes to Emotions?
    Kasos K; Zimonyi S; Kasos E; Lifshitz A; Varga K; Szekely A
    Appl Psychophysiol Biofeedback; 2018 Sep; 43(3):203-210. PubMed ID: 29926237
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Emotional response in depersonalization: A systematic review of electrodermal activity studies.
    Horn M; Fovet T; Vaiva G; Thomas P; Amad A; D'Hondt F
    J Affect Disord; 2020 Nov; 276():877-882. PubMed ID: 32739705
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Emotion Recognition With Knowledge Graph Based on Electrodermal Activity.
    Perry Fordson H; Xing X; Guo K; Xu X
    Front Neurosci; 2022; 16():911767. PubMed ID: 35757534
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Emotion recognition from multimodal physiological measurements based on an interpretable feature selection method.
    Polo EM; Mollura M; Lenatti M; Zanet M; Paglialonga A; Barbieri R
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():989-992. PubMed ID: 34891454
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging.
    Kim HC; Bandettini PA; Lee JH
    Neuroimage; 2019 Feb; 186():607-627. PubMed ID: 30366076
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Galvanic Skin Response Features in Psychiatry and Mental Disorders: A Narrative Review.
    Markiewicz R; Markiewicz-Gospodarek A; Dobrowolska B
    Int J Environ Res Public Health; 2022 Oct; 19(20):. PubMed ID: 36294009
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Emotion Assessment Using Feature Fusion and Decision Fusion Classification Based on Physiological Data: Are We There Yet?
    Bota P; Wang C; Fred A; Silva H
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32825624
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Harnessing Wearable Devices for Emotional Intelligence: Therapeutic Applications in Digital Health.
    Arabian H; Abdulbaki Alshirbaji T; Schmid R; Wagner-Hartl V; Chase JG; Moeller K
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836923
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Preliminary Study on Automatic Motion Artifact Detection in Electrodermal Activity Data Using Machine Learning.
    Hossain MB; Posada-Quintero HF; Kong Y; McNaboe R; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6920-6923. PubMed ID: 34892695
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrodermal activity analysis during affective haptic elicitation.
    Greco A; Valenza G; Nardelli M; Bianchi M; Lanata A; Scilingo EP
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5777-80. PubMed ID: 26737605
    [TBL] [Abstract][Full Text] [Related]  

  • 55. EDA-gram: designing electrodermal activity fingerprints for visualization and feature extraction.
    Chaspari T; Tsiartas A; Stein Duker LI; Cermak SA; Narayanan SS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():403-406. PubMed ID: 28268358
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Power Spectral Density Analysis of Electrodermal Activity for Sympathetic Function Assessment.
    Posada-Quintero HF; Florian JP; Orjuela-Cañón AD; Aljama-Corrales T; Charleston-Villalobos S; Chon KH
    Ann Biomed Eng; 2016 Oct; 44(10):3124-3135. PubMed ID: 27059225
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prediction of Self-Perceived Stress and Arousal Based on Electrodermal Activity
    Pakarinen T; Pietila J; Nieminen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2191-2195. PubMed ID: 31946336
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An efficient automatic workload estimation method based on electrodermal activity using pattern classifier combinations.
    Ghaderyan P; Abbasi A
    Int J Psychophysiol; 2016 Dec; 110():91-101. PubMed ID: 27780715
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sympathetic nervous system activity and pain-related response indexed by electrodermal activity during the earliest postnatal life in healthy term neonates.
    Kuderava Z; Kozar M; Visnovcova Z; Ferencova N; Tonhajzerova I; Prsova L; Zibolen M
    Physiol Res; 2023 Jul; 72(3):393-401. PubMed ID: 37449751
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrodermal Activity and Stress Assessment.
    Pop-Jordanova N; Pop-Jordanov J
    Pril (Makedon Akad Nauk Umet Odd Med Nauki); 2020 Sep; 41(2):5-15. PubMed ID: 33011695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.