These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
71 related articles for article (PubMed ID: 34042745)
1. Entity Extraction for Clinical Notes, a Comparison Between MetaMap and Amazon Comprehend Medical. Shah-Mohammadi F; Cui W; Finkelstein J Stud Health Technol Inform; 2021 May; 281():258-262. PubMed ID: 34042745 [TBL] [Abstract][Full Text] [Related]
2. Comparison of MetaMap and cTAKES for entity extraction in clinical notes. Reátegui R; Ratté S BMC Med Inform Decis Mak; 2018 Sep; 18(Suppl 3):74. PubMed ID: 30255810 [TBL] [Abstract][Full Text] [Related]
3. Comparison of ACM and CLAMP for Entity Extraction in Clinical Notes. Shah-Mohammadi F; Cui W; Finkelstein J Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1989-1992. PubMed ID: 34891677 [TBL] [Abstract][Full Text] [Related]
4. Use of "off-the-shelf" information extraction algorithms in clinical informatics: A feasibility study of MetaMap annotation of Italian medical notes. Chiaramello E; Pinciroli F; Bonalumi A; Caroli A; Tognola G J Biomed Inform; 2016 Oct; 63():22-32. PubMed ID: 27444186 [TBL] [Abstract][Full Text] [Related]
5. Natural language processing (NLP) tools in extracting biomedical concepts from research articles: a case study on autism spectrum disorder. Peng J; Zhao M; Havrilla J; Liu C; Weng C; Guthrie W; Schultz R; Wang K; Zhou Y BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 11):322. PubMed ID: 33380331 [TBL] [Abstract][Full Text] [Related]
6. A Hybrid Model for Family History Information Identification and Relation Extraction: Development and Evaluation of an End-to-End Information Extraction System. Kim Y; Heider PM; Lally IR; Meystre SM JMIR Med Inform; 2021 Apr; 9(4):e22797. PubMed ID: 33885370 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of Natural Language Processing (NLP) systems to annotate drug product labeling with MedDRA terminology. Ly T; Pamer C; Dang O; Brajovic S; Haider S; Botsis T; Milward D; Winter A; Lu S; Ball R J Biomed Inform; 2018 Jul; 83():73-86. PubMed ID: 29860093 [TBL] [Abstract][Full Text] [Related]
8. Extraction of Information Related to Drug Safety Surveillance From Electronic Health Record Notes: Joint Modeling of Entities and Relations Using Knowledge-Aware Neural Attentive Models. Dandala B; Joopudi V; Tsou CH; Liang JJ; Suryanarayanan P JMIR Med Inform; 2020 Jul; 8(7):e18417. PubMed ID: 32459650 [TBL] [Abstract][Full Text] [Related]
9. Automatic extraction of semantic relations between medical entities: a rule based approach. Ben Abacha A; Zweigenbaum P J Biomed Semantics; 2011 Oct; 2 Suppl 5(Suppl 5):S4. PubMed ID: 22166723 [TBL] [Abstract][Full Text] [Related]
10. Clinical concept recognition: Evaluation of existing systems on EHRs. Lossio-Ventura JA; Sun R; Boussard S; Hernandez-Boussard T Front Artif Intell; 2022; 5():1051724. PubMed ID: 36714202 [TBL] [Abstract][Full Text] [Related]
11. MetaMap Lite: an evaluation of a new Java implementation of MetaMap. Demner-Fushman D; Rogers WJ; Aronson AR J Am Med Inform Assoc; 2017 Jul; 24(4):841-844. PubMed ID: 28130331 [TBL] [Abstract][Full Text] [Related]
12. Attempting to Use MetaMap in Clinical Practice: A Feasibility Study on the Identification of Medical Concepts from Italian Clinical Notes. Chiaramello E; Paglialonga A; Pinciroli F; Tognola G Stud Health Technol Inform; 2016; 228():28-32. PubMed ID: 27577335 [TBL] [Abstract][Full Text] [Related]
13. Constructing a Chinese electronic medical record corpus for named entity recognition on resident admit notes. Gao Y; Gu L; Wang Y; Wang Y; Yang F BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 2):56. PubMed ID: 30961596 [TBL] [Abstract][Full Text] [Related]
14. Evaluating automated entity extraction with respect to drug and non-drug treatment strategies. Guo J; Blake C; Guan Y J Biomed Inform; 2019 Jun; 94():103177. PubMed ID: 30986506 [TBL] [Abstract][Full Text] [Related]
15. A multitask bi-directional RNN model for named entity recognition on Chinese electronic medical records. Chowdhury S; Dong X; Qian L; Li X; Guan Y; Yang J; Yu Q BMC Bioinformatics; 2018 Dec; 19(Suppl 17):499. PubMed ID: 30591015 [TBL] [Abstract][Full Text] [Related]
16. Fine-grained information extraction from German transthoracic echocardiography reports. Toepfer M; Corovic H; Fette G; Klügl P; Störk S; Puppe F BMC Med Inform Decis Mak; 2015 Nov; 15():91. PubMed ID: 26563260 [TBL] [Abstract][Full Text] [Related]
17. A Pattern-Based Method for Medical Entity Recognition From Chinese Diagnostic Imaging Text. Liang Z; Chen J; Xu Z; Chen Y; Hao T Front Artif Intell; 2019; 2():1. PubMed ID: 33733090 [No Abstract] [Full Text] [Related]
18. Temporal indexing of medical entity in Chinese clinical notes. Liu Z; Wang X; Chen Q; Tang B; Xu H BMC Med Inform Decis Mak; 2019 Jan; 19(Suppl 1):17. PubMed ID: 30700331 [TBL] [Abstract][Full Text] [Related]
19. Extracting comprehensive clinical information for breast cancer using deep learning methods. Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032 [TBL] [Abstract][Full Text] [Related]
20. Extracting important information from Chinese Operation Notes with natural language processing methods. Wang H; Zhang W; Zeng Q; Li Z; Feng K; Liu L J Biomed Inform; 2014 Apr; 48():130-6. PubMed ID: 24486562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]