These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 34042975)
1. Resilience of cardiac performance in Antarctic notothenioid fishes in a warming climate. O'Brien KM; Joyce W; Crockett EL; Axelsson M; Egginton S; Farrell AP J Exp Biol; 2021 May; 224(10):. PubMed ID: 34042975 [TBL] [Abstract][Full Text] [Related]
2. Mitochondrial membranes in cardiac muscle from Antarctic notothenioid fishes vary in phospholipid composition and membrane fluidity. Biederman AM; Kuhn DE; O'Brien KM; Crockett EL Comp Biochem Physiol B Biochem Mol Biol; 2019 Sep; 235():46-53. PubMed ID: 31176865 [TBL] [Abstract][Full Text] [Related]
3. Thermal profiles reveal stark contrasts in properties of biological membranes from heart among Antarctic notothenioid fishes which vary in expression of hemoglobin and myoglobin. Evans ER; Farnoud AM; O'Brien KM; Crockett EL Comp Biochem Physiol B Biochem Mol Biol; 2021; 252():110539. PubMed ID: 33242660 [TBL] [Abstract][Full Text] [Related]
4. Cardiac mitochondrial metabolism may contribute to differences in thermal tolerance of red- and white-blooded Antarctic notothenioid fishes. O'Brien KM; Rix AS; Egginton S; Farrell AP; Crockett EL; Schlauch K; Woolsey R; Hoffman M; Merriman S J Exp Biol; 2018 Aug; 221(Pt 15):. PubMed ID: 29895681 [TBL] [Abstract][Full Text] [Related]
5. Hyperoxia Does Not Extend Critical Thermal Maxima (CTmax) in White- or Red-Blooded Antarctic Notothenioid Fishes. Devor DP; Kuhn DE; O'Brien KM; Crockett EL Physiol Biochem Zool; 2016; 89(1):1-9. PubMed ID: 27082520 [TBL] [Abstract][Full Text] [Related]
6. Maximum cardiac performance of Antarctic fishes that lack haemoglobin and myoglobin: exploring the effect of warming on nature's natural knockouts. Egginton S; Axelsson M; Crockett EL; O'Brien KM; Farrell AP Conserv Physiol; 2019; 7(1):coz049. PubMed ID: 31620287 [TBL] [Abstract][Full Text] [Related]
7. Thermal tolerance of Antarctic notothenioid fishes correlates with level of circulating hemoglobin. Beers JM; Sidell BD Physiol Biochem Zool; 2011; 84(4):353-62. PubMed ID: 21743249 [TBL] [Abstract][Full Text] [Related]
8. Characterization of the hypoxia-inducible factor-1 pathway in hearts of Antarctic notothenioid fishes. O'Brien KM; Rix AS; Grove TJ; Sarrimanolis J; Brooking A; Roberts M; Crockett EL Comp Biochem Physiol B Biochem Mol Biol; 2020 Dec; 250():110505. PubMed ID: 32966875 [TBL] [Abstract][Full Text] [Related]
9. Exposure to critical thermal maxima increases oxidative stress in hearts of white- but not red-blooded Antarctic notothenioid fishes. Mueller IA; Devor DP; Grim JM; Beers JM; Crockett EL; O'Brien KM J Exp Biol; 2012 Oct; 215(Pt 20):3655-64. PubMed ID: 22811244 [TBL] [Abstract][Full Text] [Related]
10. Expansion of capacities for iron transport and sequestration reflects plasma volumes and heart mass among white-blooded notothenioid fishes. Kuhn DE; O'Brien KM; Crockett EL Am J Physiol Regul Integr Comp Physiol; 2016 Oct; 311(4):R649-R657. PubMed ID: 27465736 [TBL] [Abstract][Full Text] [Related]
12. Physical, chemical, and functional properties of neuronal membranes vary between species of Antarctic notothenioids differing in thermal tolerance. Biederman AM; Kuhn DE; O'Brien KM; Crockett EL J Comp Physiol B; 2019 Apr; 189(2):213-222. PubMed ID: 30739144 [TBL] [Abstract][Full Text] [Related]
13. High mitochondrial densities in the hearts of Antarctic icefishes are maintained by an increase in mitochondrial size rather than mitochondrial biogenesis. Urschel MR; O'Brien KM J Exp Biol; 2008 Aug; 211(Pt 16):2638-46. PubMed ID: 18689417 [TBL] [Abstract][Full Text] [Related]
14. Muscle fine structure may maintain the function of oxidative fibres in haemoglobinless Antarctic fishes. O'Brien KM; Skilbeck C; Sidell BD; Egginton S J Exp Biol; 2003 Jan; 206(Pt 2):411-21. PubMed ID: 12477911 [TBL] [Abstract][Full Text] [Related]
15. Characterization of mitochondrial glycerol-3-phosphate acyltransferase in notothenioid fishes. Keenan KA; Grove TJ; Oldham CA; O'Brien KM Comp Biochem Physiol B Biochem Mol Biol; 2017 Feb; 204():9-26. PubMed ID: 27836743 [TBL] [Abstract][Full Text] [Related]
16. Antarctic notothenioid fishes: genomic resources and strategies for analyzing an adaptive radiation. Detrich HW; Amemiya CT Integr Comp Biol; 2010 Dec; 50(6):1009-17. PubMed ID: 21082069 [TBL] [Abstract][Full Text] [Related]
17. Homeoviscous adaptation occurs with thermal acclimation in biological membranes from heart and gill, but not the brain, in the Antarctic fish Notothenia coriiceps. Biederman AM; O'Brien KM; Crockett EL J Comp Physiol B; 2021 Mar; 191(2):289-300. PubMed ID: 33479792 [TBL] [Abstract][Full Text] [Related]
18. Bone microstructure and bone mineral density are not systemically different in Antarctic icefishes and related Antarctic notothenioids. Ashique AM; Atake OJ; Ovens K; Guo R; Pratt IV; Detrich HW; Cooper DML; Desvignes T; Postlethwait JH; Eames BF J Anat; 2022 Jan; 240(1):34-49. PubMed ID: 34423431 [TBL] [Abstract][Full Text] [Related]
19. Inter-relationship between mitochondrial function and susceptibility to oxidative stress in red- and white-blooded Antarctic notothenioid fishes. Mueller IA; Grim JM; Beers JM; Crockett EL; O'Brien KM J Exp Biol; 2011 Nov; 214(Pt 22):3732-41. PubMed ID: 22031737 [TBL] [Abstract][Full Text] [Related]
20. Warm acclimation alters antioxidant defences but not metabolic capacities in the Antarctic fish, O'Brien KM; Oldham CA; Sarrimanolis J; Fish A; Castellini L; Vance J; Lekanof H; Crockett EL Conserv Physiol; 2022; 10(1):coac054. PubMed ID: 35935168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]