These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3404310)

  • 1. Two-dimensional spatial structure of receptive fields in monkey striate cortex.
    Parker AJ; Hawken MJ
    J Opt Soc Am A; 1988 Apr; 5(4):598-605. PubMed ID: 3404310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and temporal frequency tuning in striate cortex: functional uniformity and specializations related to receptive field eccentricity.
    Yu HH; Verma R; Yang Y; Tibballs HA; Lui LL; Reser DH; Rosa MG
    Eur J Neurosci; 2010 Mar; 31(6):1043-62. PubMed ID: 20377618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form.
    Desimone R; Schein SJ
    J Neurophysiol; 1987 Mar; 57(3):835-68. PubMed ID: 3559704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex.
    Ringach DL
    J Neurophysiol; 2002 Jul; 88(1):455-63. PubMed ID: 12091567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey.
    Hawken MJ; Parker AJ; Lund JS
    J Neurosci; 1988 Oct; 8(10):3541-8. PubMed ID: 3193169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons.
    Cavanaugh JR; Bair W; Movshon JA
    J Neurophysiol; 2002 Nov; 88(5):2547-56. PubMed ID: 12424293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial receptive-field properties of direction-selective neurons in cat striate cortex.
    Baker CL; Cynader MS
    J Neurophysiol; 1986 Jun; 55(6):1136-52. PubMed ID: 3734852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development.
    DeAngelis GC; Ohzawa I; Freeman RD
    J Neurophysiol; 1993 Apr; 69(4):1091-117. PubMed ID: 8492151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and chromatic properties of neurons subserving foveal and parafoveal vision in rhesus monkey.
    Poggio GF; Baker FH; Mansfield RJ; Sillito A; Grigg P
    Brain Res; 1975 Dec; 100(1):25-59. PubMed ID: 810220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrast-dependent changes in spatial frequency tuning of macaque V1 neurons: effects of a changing receptive field size.
    Sceniak MP; Hawken MJ; Shapley R
    J Neurophysiol; 2002 Sep; 88(3):1363-73. PubMed ID: 12205157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation.
    DeAngelis GC; Ohzawa I; Freeman RD
    J Neurophysiol; 1993 Apr; 69(4):1118-35. PubMed ID: 8492152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orientation Tuning Depends on Spatial Frequency in Mouse Visual Cortex.
    Ayzenshtat I; Jackson J; Yuste R
    eNeuro; 2016; 3(5):. PubMed ID: 27699210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of suppression in receptive fields of neurons in cat visual cortex.
    DeAngelis GC; Robson JG; Ohzawa I; Freeman RD
    J Neurophysiol; 1992 Jul; 68(1):144-63. PubMed ID: 1517820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey.
    Foster KH; Gaska JP; Nagler M; Pollen DA
    J Physiol; 1985 Aug; 365():331-63. PubMed ID: 4032318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of orientation selectivity from receptive field architecture in simple cells of cat visual cortex.
    Lampl I; Anderson JS; Gillespie DC; Ferster D
    Neuron; 2001 Apr; 30(1):263-74. PubMed ID: 11343660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
    Naito T; Sadakane O; Okamoto M; Sato H
    Neuroscience; 2007 Nov; 149(4):962-75. PubMed ID: 17945429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulus ensemble and cortical layer determine V1 spatial receptive fields.
    Yeh CI; Xing D; Williams PE; Shapley RM
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14652-7. PubMed ID: 19706551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of a correlation-based model for the development of orientation-selective receptive fields in the visual cortex.
    Wimbauer S; Gerstner W; van Hemmen JL
    Network; 1998 Nov; 9(4):449-66. PubMed ID: 10221574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons.
    DeAngelis GC; Ghose GM; Ohzawa I; Freeman RD
    J Neurosci; 1999 May; 19(10):4046-64. PubMed ID: 10234033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial distribution of contextual interactions in primary visual cortex and in visual perception.
    Kapadia MK; Westheimer G; Gilbert CD
    J Neurophysiol; 2000 Oct; 84(4):2048-62. PubMed ID: 11024097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.