BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 34043300)

  • 1. Targeting K
    Todesca LM; Maskri S; Brömmel K; Thale I; Wünsch B; Koch O; Schwab A
    Cell Physiol Biochem; 2021 May; 55(S3):131-144. PubMed ID: 34043300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repurposing the K
    Lee RD; Chen YJ; Nguyen HM; Singh L; Dietrich CJ; Pyles BR; Cui Y; Weinstein JR; Wulff H
    Transl Stroke Res; 2024 Jun; 15(3):518-532. PubMed ID: 37088858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of the potassium channel K
    Staal RGW; Khayrullina T; Zhang H; Davis S; Fallon SM; Cajina M; Nattini ME; Hu A; Zhou H; Poda SB; Zorn S; Chandrasena G; Dale E; Cambpell B; Biilmann Rønn LC; Munro G; Mӧller T
    Eur J Pharmacol; 2017 Jan; 795():1-7. PubMed ID: 27876619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KCa3.1 Channel Modulators as Potential Therapeutic Compounds for Glioblastoma.
    Brown BM; Pressley B; Wulff H
    Curr Neuropharmacol; 2018; 16(5):618-626. PubMed ID: 28676010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel phenolic inhibitors of small/intermediate-conductance Ca²⁺-activated K⁺ channels, KCa3.1 and KCa2.3.
    Oliván-Viguera A; Valero MS; Murillo MD; Wulff H; García-Otín AL; Arbonés-Mainar JM; Köhler R
    PLoS One; 2013; 8(3):e58614. PubMed ID: 23516517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-staining of K
    Brömmel K; Maskri S; Bulk E; Pethő Z; Rieke M; Budde T; Koch O; Schwab A; Wünsch B
    ChemMedChem; 2020 Dec; 15(24):2462-2469. PubMed ID: 33043595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic coupling between TRPV4 and Ca
    Li Y; Hu H; Tian JB; Zhu MX; O'Neil RG
    Am J Physiol Renal Physiol; 2017 Jun; 312(6):F1081-F1089. PubMed ID: 28274924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. K
    Bonito B; Sauter DR; Schwab A; Djamgoz MB; Novak I
    Pflugers Arch; 2016 Nov; 468(11-12):1865-1875. PubMed ID: 27752766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacology of Small- and Intermediate-Conductance Calcium-Activated Potassium Channels.
    Brown BM; Shim H; Christophersen P; Wulff H
    Annu Rev Pharmacol Toxicol; 2020 Jan; 60():219-240. PubMed ID: 31337271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erythrocytes from hereditary xerocytosis patients heterozygous for KCNN4 V282M exhibit increased spontaneous Gardos channel-like activity inhibited by senicapoc.
    Rivera A; Vandorpe DH; Shmukler BE; Gallagher DR; Fikry CC; Kuypers FA; Brugnara C; Snyder LM; Alper SL
    Am J Hematol; 2017 Jun; 92(6):E108-E110. PubMed ID: 28295477
    [No Abstract]   [Full Text] [Related]  

  • 11. Improvements in haemolysis and indicators of erythrocyte survival do not correlate with acute vaso-occlusive crises in patients with sickle cell disease: a phase III randomized, placebo-controlled, double-blind study of the Gardos channel blocker senicapoc (ICA-17043).
    Ataga KI; Reid M; Ballas SK; Yasin Z; Bigelow C; James LS; Smith WR; Galacteros F; Kutlar A; Hull JH; Stocker JW;
    Br J Haematol; 2011 Apr; 153(1):92-104. PubMed ID: 21323872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological gating modulation of small- and intermediate-conductance Ca(2+)-activated K(+) channels (KCa2.x and KCa3.1).
    Christophersen P; Wulff H
    Channels (Austin); 2015; 9(6):336-43. PubMed ID: 26217968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repurposing the KCa3.1 inhibitor senicapoc for Alzheimer's disease.
    Jin LW; Lucente JD; Nguyen HM; Singh V; Singh L; Chavez M; Bushong T; Wulff H; Maezawa I
    Ann Clin Transl Neurol; 2019 Apr; 6(4):723-738. PubMed ID: 31019997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-steatotic and anti-fibrotic effects of the KCa3.1 channel inhibitor, Senicapoc, in non-alcoholic liver disease.
    Paka L; Smith DE; Jung D; McCormack S; Zhou P; Duan B; Li JS; Shi J; Hao YJ; Jiang K; Yamin M; Goldberg ID; Narayan P
    World J Gastroenterol; 2017 Jun; 23(23):4181-4190. PubMed ID: 28694658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KCa3.1 Channels and Glioblastoma: In Vitro Studies.
    Klumpp L; Sezgin EC; Skardelly M; Eckert F; Huber SM
    Curr Neuropharmacol; 2018; 16(5):627-635. PubMed ID: 28786347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The combined activation of K
    Pillozzi S; D'Amico M; Bartoli G; Gasparoli L; Petroni G; Crociani O; Marzo T; Guerriero A; Messori L; Severi M; Udisti R; Wulff H; Chandy KG; Becchetti A; Arcangeli A
    Br J Cancer; 2018 Jan; 118(2):200-212. PubMed ID: 29161243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trafficking of intermediate (KCa3.1) and small (KCa2.x) conductance, Ca(2+)-activated K(+) channels: a novel target for medicinal chemistry efforts?
    Balut CM; Hamilton KL; Devor DC
    ChemMedChem; 2012 Oct; 7(10):1741-55. PubMed ID: 22887933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-dependent potassium channels control proliferation of cardiac progenitor cells and bone marrow-derived mesenchymal stem cells.
    Vigneault P; Naud P; Qi X; Xiao J; Villeneuve L; Davis DR; Nattel S
    J Physiol; 2018 Jun; 596(12):2359-2379. PubMed ID: 29574723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-throughput screening campaign for detection of ca(2+)-activated k(+) channel activators and inhibitors using a fluorometric imaging plate reader-based tl(+)-influx assay.
    Jørgensen S; Dyhring T; Brown DT; Strøbæk D; Christophersen P; Demnitz J
    Assay Drug Dev Technol; 2013 Apr; 11(3):163-72. PubMed ID: 23198866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting ion channels for cancer therapy by repurposing the approved drugs.
    Kale VP; Amin SG; Pandey MK
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt B):2747-55. PubMed ID: 25843679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.