BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 34043527)

  • 41. On Slip Detection for Quadruped Robots.
    Nisticò Y; Fahmi S; Pallottino L; Semini C; Fink G
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458952
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bidirectional Locomotion of Soft Inchworm Crawler Using Dynamic Gaits.
    Du L; Ma S; Tokuda K; Tian Y; Li L
    Front Robot AI; 2022; 9():899850. PubMed ID: 35783025
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multi-Phase Joint-Angle Trajectory Generation Inspired by Dog Motion for Control of Quadruped Robot.
    Choi J
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640686
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Continuous Online Adaptation of Bioinspired Adaptive Neuroendocrine Control for Autonomous Walking Robots.
    Homchanthanakul J; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):1833-1845. PubMed ID: 34669583
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design and control of a pneumatic musculoskeletal biped robot.
    Zang X; Liu Y; Liu X; Zhao J
    Technol Health Care; 2016 Apr; 24 Suppl 2():S443-54. PubMed ID: 27163303
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Control and study of bio-inspired quadrupedal gaits on an underactuated miniature robot.
    Askari M; Ugur M; Mahkam N; Yeldan A; Ozcan O
    Bioinspir Biomim; 2023 Jan; 18(2):. PubMed ID: 36608346
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Quadruped Robot Exhibiting Spontaneous Gait Transitions from Walking to Trotting to Galloping.
    Owaki D; Ishiguro A
    Sci Rep; 2017 Mar; 7(1):277. PubMed ID: 28325917
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multi-constraint spatial coupling for the body joint quadruped robot and the CPG control method on rough terrain.
    Song G; Ai Q; Tong H; Xu J; Zhu S
    Bioinspir Biomim; 2023 Sep; 18(5):. PubMed ID: 37611613
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design of Spiking Central Pattern Generators for Multiple Locomotion Gaits in Hexapod Robots by Christiansen Grammar Evolution.
    Espinal A; Rostro-Gonzalez H; Carpio M; Guerra-Hernandez EI; Ornelas-Rodriguez M; Sotelo-Figueroa M
    Front Neurorobot; 2016; 10():6. PubMed ID: 27516737
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design of Low-Cost Modular Bio-Inspired Electric-Pneumatic Actuator (EPA)-Driven Legged Robots.
    Silva AB; Murcia M; Mohseni O; Takahashi R; Forner-Cordero A; Seyfarth A; Hosoda K; Sharbafi MA
    Biomimetics (Basel); 2024 Mar; 9(3):. PubMed ID: 38534849
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles.
    Tawk C; In Het Panhuis M; Spinks GM; Alici G
    Soft Robot; 2018 Dec; 5(6):685-694. PubMed ID: 30040042
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spikebot: A Multigait Tensegrity Robot with Linearly Extending Struts.
    Jeong J; Kim I; Choi Y; Lim S; Kim S; Kang H; Shah D; Baines R; Booth JW; Kramer-Bottiglio R; Kim SY
    Soft Robot; 2024 Apr; 11(2):207-217. PubMed ID: 37819709
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot.
    Bing Z; Cheng L; Chen G; Röhrbein F; Huang K; Knoll A
    Bioinspir Biomim; 2017 Apr; 12(3):035001. PubMed ID: 28375848
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Cut-and-Fold Self-Sustained Compliant Oscillator for Autonomous Actuation of Origami-Inspired Robots.
    Yan W; Mehta A
    Soft Robot; 2022 Oct; 9(5):871-881. PubMed ID: 34813378
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Locomotion of Miniature Soft Robots.
    Ng CSX; Tan MWM; Xu C; Yang Z; Lee PS; Lum GZ
    Adv Mater; 2021 May; 33(19):e2003558. PubMed ID: 33338296
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An Ultralightweight and Living Legged Robot.
    Vo Doan TT; Tan MYW; Bui XH; Sato H
    Soft Robot; 2018 Feb; 5(1):17-23. PubMed ID: 29412086
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design and Motion Analysis of a Soft-Limb Robot Inspired by Bacterial Flagella.
    Ye C; Liu Z; Yu S; Fan Z; Wang Y
    Biomimetics (Basel); 2023 Jun; 8(3):. PubMed ID: 37504159
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multifunctional Soft Stackable Robots by Netting-Rolling-Splicing Pneumatic Artificial Muscles.
    Guan Q; Liu L; Sun J; Wang J; Guo J; Liu Y; Leng J
    Soft Robot; 2023 Oct; 10(5):1001-1014. PubMed ID: 37074447
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design and Development of a Growing Pneumatic Soft Robot.
    Talas SK; Baydere BA; Altinsoy T; Tutcu C; Samur E
    Soft Robot; 2020 Aug; 7(4):521-533. PubMed ID: 32150509
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An Untethered Soft Robotic Dog Standing and Fast Trotting with Jointless and Resilient Soft Legs.
    Li Y; Li Y; Ren T; Xia J; Liu H; Wu C; Lin S; Chen Y
    Biomimetics (Basel); 2023 Dec; 8(8):. PubMed ID: 38132535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.