These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 34043550)

  • 1. Reinforcement learning with artificial microswimmers.
    Muiños-Landin S; Fischer A; Holubec V; Cichos F
    Sci Robot; 2021 Mar; 6(52):. PubMed ID: 34043550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microswimmers learning chemotaxis with genetic algorithms.
    Hartl B; Hübl M; Kahl G; Zöttl A
    Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33947812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fight the flow: the role of shear in artificial rheotaxis for individual and collective motion.
    Baker R; Kauffman JE; Laskar A; Shklyaev OE; Potomkin M; Dominguez-Rubio L; Shum H; Cruz-Rivera Y; Aranson IS; Balazs AC; Sen A
    Nanoscale; 2019 Jun; 11(22):10944-10951. PubMed ID: 31139774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully Steerable Symmetric Thermoplasmonic Microswimmers.
    Fränzl M; Muiños-Landin S; Holubec V; Cichos F
    ACS Nano; 2021 Feb; 15(2):3434-3440. PubMed ID: 33556235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Swim pressure on walls with curves and corners.
    Smallenburg F; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032304. PubMed ID: 26465470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic localization of microswimmers by photon nudging.
    Bregulla AP; Yang H; Cichos F
    ACS Nano; 2014 Jul; 8(7):6542-50. PubMed ID: 24861455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning how to find targets in the micro-world: the case of intermittent active Brownian particles.
    Caraglio M; Kaur H; Fiderer LJ; López-Incera A; Briegel HJ; Franosch T; Muñoz-Gil G
    Soft Matter; 2024 Feb; 20(9):2008-2016. PubMed ID: 38328899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous vortex formation by microswimmers with retarded attractions.
    Wang X; Chen PC; Kroy K; Holubec V; Cichos F
    Nat Commun; 2023 Jan; 14(1):56. PubMed ID: 36599830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can the self-propulsion of anisotropic microswimmers be described by using forces and torques?
    ten Hagen B; Wittkowski R; Takagi D; Kümmel F; Bechinger C; Löwen H
    J Phys Condens Matter; 2015 May; 27(19):194110. PubMed ID: 25923010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smart active particles learn and transcend bacterial foraging strategies.
    Nasiri M; Loran E; Liebchen B
    Proc Natl Acad Sci U S A; 2024 Apr; 121(15):e2317618121. PubMed ID: 38557193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic and geometric effects in the sedimentation of model run-and-tumble microswimmers.
    Scagliarini A; Pagonabarraga I
    Soft Matter; 2022 Mar; 18(12):2407-2413. PubMed ID: 35266484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable Phototaxis of Metal-Phenolic Particle Microswimmers.
    Lin G; Richardson JJ; Ahmed H; Besford QA; Christofferson AJ; Beyer S; Lin Z; Rezk AR; Savioli M; Zhou J; McConville CF; Cortez-Jugo C; Yeo LY; Caruso F
    Adv Mater; 2021 Apr; 33(13):e2006177. PubMed ID: 33634513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noisy swimming at low Reynolds numbers.
    Dunkel J; Zaid IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021903. PubMed ID: 19792147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brownian motion of a circle swimmer in a harmonic trap.
    Jahanshahi S; Löwen H; Ten Hagen B
    Phys Rev E; 2017 Feb; 95(2-1):022606. PubMed ID: 28297979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronisation through learning for two self-propelled swimmers.
    Novati G; Verma S; Alexeev D; Rossinelli D; van Rees WM; Koumoutsakos P
    Bioinspir Biomim; 2017 Mar; 12(3):036001. PubMed ID: 28355166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning to cooperate for low-Reynolds-number swimming: a model problem for gait coordination.
    Liu Y; Zou Z; Pak OS; Tsang ACH
    Sci Rep; 2023 Jun; 13(1):9397. PubMed ID: 37296306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing synthetic active particles for physical reservoir computing.
    Wang X; Cichos F
    Nat Commun; 2024 Jan; 15(1):774. PubMed ID: 38287028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal run-and-tumble-based transportation of a Janus particle with active steering.
    Mano T; Delfau JB; Iwasawa J; Sano M
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):E2580-E2589. PubMed ID: 28292904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustically Powered Nano- and Microswimmers: From Individual to Collective Behavior.
    McNeill JM; Mallouk TE
    ACS Nanosci Au; 2023 Dec; 3(6):424-440. PubMed ID: 38144701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motion of microswimmers in cylindrical microchannels.
    Overberg FA; Gompper G; Fedosov DA
    Soft Matter; 2024 Mar; 20(13):3007-3020. PubMed ID: 38495021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.