These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 34043560)

  • 1. Cavatappi artificial muscles from drawing, twisting, and coiling polymer tubes.
    Higueras-Ruiz DR; Shafer MW; Feigenbaum HP
    Sci Robot; 2021 Apr; 6(53):. PubMed ID: 34043560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic bellow muscle actuators and energy harvesters that stack up.
    Sîrbu ID; Moretti G; Bortolotti G; Bolignari M; Diré S; Fambri L; Vertechy R; Fontana M
    Sci Robot; 2021 Feb; 6(51):. PubMed ID: 34043528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wet-Spun Biofiber for Torsional Artificial Muscles.
    Mirabedini A; Aziz S; Spinks GM; Foroughi J
    Soft Robot; 2017 Dec; 4(4):421-430. PubMed ID: 29251569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles.
    Tawk C; In Het Panhuis M; Spinks GM; Alici G
    Soft Robot; 2018 Dec; 5(6):685-694. PubMed ID: 30040042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectric Elastomer Artificial Muscle: Materials Innovations and Device Explorations.
    Qiu Y; Zhang E; Plamthottam R; Pei Q
    Acc Chem Res; 2019 Feb; 52(2):316-325. PubMed ID: 30698006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid-driven origami-inspired artificial muscles.
    Li S; Vogt DM; Rus D; Wood RJ
    Proc Natl Acad Sci U S A; 2017 Dec; 114(50):13132-13137. PubMed ID: 29180416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermo-Pneumatic Artificial Muscle: Air-Based Thermo-Pneumatic Artificial Muscles for Pumpless Pneumatic Actuation.
    Shin J; Jamil B; Moon H; Koo JC; Choi HR; Rodrigue H
    Soft Robot; 2024 Apr; 11(2):187-197. PubMed ID: 37646778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic high performance artificial muscle built on sacrificial coordination network and mechanical training process.
    Tu Z; Liu W; Wang J; Qiu X; Huang J; Li J; Lou H
    Nat Commun; 2021 May; 12(1):2916. PubMed ID: 34006839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New twist on artificial muscles.
    Haines CS; Li N; Spinks GM; Aliev AE; Di J; Baughman RH
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11709-11716. PubMed ID: 27671626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biohybrid soft robots with self-stimulating skeletons.
    Guix M; Mestre R; Patiño T; De Corato M; Fuentes J; Zarpellon G; Sánchez S
    Sci Robot; 2021 Apr; 6(53):. PubMed ID: 34043566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual high-stroke and high-work capacity artificial muscles inspired by DNA supercoiling.
    Spinks GM; Martino ND; Naficy S; Shepherd DJ; Foroughi J
    Sci Robot; 2021 Apr; 6(53):. PubMed ID: 34043569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing antagonistic systems of artificial muscle using projection stereolithography.
    Peele BN; Wallin TJ; Zhao H; Shepherd RF
    Bioinspir Biomim; 2015 Sep; 10(5):055003. PubMed ID: 26353071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D-printed biomimetic artificial muscles using soft actuators that contract and elongate.
    De Pascali C; Naselli GA; Palagi S; Scharff RBN; Mazzolai B
    Sci Robot; 2022 Jul; 7(68):eabn4155. PubMed ID: 35895921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compact and low-cost humanoid hand powered by nylon artificial muscles.
    Wu L; Jung de Andrade M; Saharan LK; Rome RS; Baughman RH; Tadesse Y
    Bioinspir Biomim; 2017 Feb; 12(2):026004. PubMed ID: 28157716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and analysis of a meso-hydraulic climbing robot with artificial muscle actuation.
    Chapman EM; Jenkins TE; Bryant M
    Bioinspir Biomim; 2017 Nov; 12(6):066010. PubMed ID: 28691919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally Responsive Torsional and Tensile Fiber Actuator Based on Graphene Oxide.
    Kim H; Moon JH; Mun TJ; Park TG; Spinks GM; Wallace GG; Kim SJ
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32760-32764. PubMed ID: 30175913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of bladder wall thickness on miniature pneumatic artificial muscle performance.
    Pillsbury TE; Kothera CS; Wereley NM
    Bioinspir Biomim; 2015 Sep; 10(5):055006. PubMed ID: 26414160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving actuation efficiency through variable recruitment hydraulic McKibben muscles: modeling, orderly recruitment control, and experiments.
    Meller M; Chipka J; Volkov A; Bryant M; Garcia E
    Bioinspir Biomim; 2016 Nov; 11(6):065004. PubMed ID: 27811379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced Actuator Materials Powered by Biomimetic Helical Fiber Topologies.
    Spinks GM
    Adv Mater; 2020 May; 32(18):e1904093. PubMed ID: 31793710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Soft Pneumatic Artificial Muscle with High-Contraction Ratio.
    Han K; Kim NH; Shin D
    Soft Robot; 2018 Oct; 5(5):554-566. PubMed ID: 29924698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.