These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 34043566)
1. Biohybrid soft robots with self-stimulating skeletons. Guix M; Mestre R; Patiño T; De Corato M; Fuentes J; Zarpellon G; Sánchez S Sci Robot; 2021 Apr; 6(53):. PubMed ID: 34043566 [TBL] [Abstract][Full Text] [Related]
2. Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles. Tawk C; In Het Panhuis M; Spinks GM; Alici G Soft Robot; 2018 Dec; 5(6):685-694. PubMed ID: 30040042 [TBL] [Abstract][Full Text] [Related]
3. 3D printing antagonistic systems of artificial muscle using projection stereolithography. Peele BN; Wallin TJ; Zhao H; Shepherd RF Bioinspir Biomim; 2015 Sep; 10(5):055003. PubMed ID: 26353071 [TBL] [Abstract][Full Text] [Related]
4. Recent progress in engineering functional biohybrid robots actuated by living cells. Gao L; Akhtar MU; Yang F; Ahmad S; He J; Lian Q; Cheng W; Zhang J; Li D Acta Biomater; 2021 Feb; 121():29-40. PubMed ID: 33285324 [TBL] [Abstract][Full Text] [Related]
5. Fast-Swimming Soft Robotic Fish Actuated by Bionic Muscle. Wang R; Zhang C; Zhang Y; Yang L; Tan W; Qin H; Wang F; Liu L Soft Robot; 2024 Oct; 11(5):845-856. PubMed ID: 38407844 [TBL] [Abstract][Full Text] [Related]
6. Living Materials Herald a New Era in Soft Robotics. Appiah C; Arndt C; Siemsen K; Heitmann A; Staubitz A; Selhuber-Unkel C Adv Mater; 2019 Sep; 31(36):e1807747. PubMed ID: 31267628 [TBL] [Abstract][Full Text] [Related]
7. Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots. Umedachi T; Vikas V; Trimmer BA Bioinspir Biomim; 2016 Mar; 11(2):025001. PubMed ID: 26963596 [TBL] [Abstract][Full Text] [Related]
8. Determining the influence of muscle operating length on muscle performance during frog swimming using a bio-robotic model. Clemente CJ; Richards C Bioinspir Biomim; 2012 Sep; 7(3):036018. PubMed ID: 22677569 [TBL] [Abstract][Full Text] [Related]
9. Electrostatic bellow muscle actuators and energy harvesters that stack up. Sîrbu ID; Moretti G; Bortolotti G; Bolignari M; Diré S; Fambri L; Vertechy R; Fontana M Sci Robot; 2021 Feb; 6(51):. PubMed ID: 34043528 [TBL] [Abstract][Full Text] [Related]
10. CFD-based multi-objective controller optimization for soft robotic fish with muscle-like actuation. Hess A; Tan X; Gao T Bioinspir Biomim; 2020 Mar; 15(3):035004. PubMed ID: 31958782 [TBL] [Abstract][Full Text] [Related]
11. Special section on biomimetics of movement. Carpi F; Erb R; Jeronimidis G Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305 [TBL] [Abstract][Full Text] [Related]
12. A modular approach to the design, fabrication, and characterization of muscle-powered biological machines. Raman R; Cvetkovic C; Bashir R Nat Protoc; 2017 Mar; 12(3):519-533. PubMed ID: 28182019 [TBL] [Abstract][Full Text] [Related]
13. HASEL Artificial Muscles for a New Generation of Lifelike Robots-Recent Progress and Future Opportunities. Rothemund P; Kellaris N; Mitchell SK; Acome E; Keplinger C Adv Mater; 2021 May; 33(19):e2003375. PubMed ID: 33166000 [TBL] [Abstract][Full Text] [Related]
14. Biomimetic high performance artificial muscle built on sacrificial coordination network and mechanical training process. Tu Z; Liu W; Wang J; Qiu X; Huang J; Li J; Lou H Nat Commun; 2021 May; 12(1):2916. PubMed ID: 34006839 [TBL] [Abstract][Full Text] [Related]