These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34043579)

  • 41. Self-propelled swimming simulations of bio-inspired smart structures.
    Daghooghi M; Borazjani I
    Bioinspir Biomim; 2016 Aug; 11(5):056001. PubMed ID: 27501748
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tunabot Flex: a tuna-inspired robot with body flexibility improves high-performance swimming.
    White CH; Lauder GV; Bart-Smith H
    Bioinspir Biomim; 2021 Mar; 16(2):. PubMed ID: 32927442
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Swimming dynamics and propulsive efficiency of squids throughout ontogeny.
    Bartol IK; Krueger PS; Thompson JT; Stewart WJ
    Integr Comp Biol; 2008 Dec; 48(6):720-33. PubMed ID: 21669828
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thrust force characterization of free-swimming soft robotic jellyfish.
    Frame J; Lopez N; Curet O; Engeberg ED
    Bioinspir Biomim; 2018 Sep; 13(6):064001. PubMed ID: 30226216
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Suction-based propulsion as a basis for efficient animal swimming.
    Gemmell BJ; Colin SP; Costello JH; Dabiri JO
    Nat Commun; 2015 Nov; 6():8790. PubMed ID: 26529342
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fast-swimming hydromedusae exploit velar kinematics to form an optimal vortex wake.
    Dabiri JO; Colin SP; Costello JH
    J Exp Biol; 2006 Jun; 209(Pt 11):2025-33. PubMed ID: 16709905
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.
    Blake RW; Ng H; Chan KH; Li J
    Bioinspir Biomim; 2008 Sep; 3(3):034002. PubMed ID: 18626130
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method.
    Wen L; Wang TM; Wu GH; Liang JH
    Bioinspir Biomim; 2012 Sep; 7(3):036012. PubMed ID: 22556135
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comprehensive analysis of efficient swimming using articulated legs fringed with flexible appendages inspired by a water beetle.
    Kwak B; Lee D; Bae J
    Bioinspir Biomim; 2019 Sep; 14(6):066003. PubMed ID: 31362269
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Swimming mechanics and behavior of the shallow-water brief squid Lolliguncula brevis.
    Bartol IK; Patterson MR; Mann R
    J Exp Biol; 2001 Nov; 204(Pt 21):3655-82. PubMed ID: 11719531
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Self-propelled swimming of a flexible plunging foil near a solid wall.
    Dai L; He G; Zhang X
    Bioinspir Biomim; 2016 Jul; 11(4):046005. PubMed ID: 27377880
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Swimming performance of a bio-inspired robotic vessel with undulating fin propulsion.
    Liu H; Curet O
    Bioinspir Biomim; 2018 Jul; 13(5):056006. PubMed ID: 29911657
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin.
    Low KH; Chong CW
    Bioinspir Biomim; 2010 Dec; 5(4):046002. PubMed ID: 21068469
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Robotic device shows lack of momentum enhancement for gymnotiform swimmers.
    English I; Liu H; Curet OM
    Bioinspir Biomim; 2019 Jan; 14(2):024001. PubMed ID: 30562723
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel autonomous, bioinspired swimming robot developed by neuroscientists and bioengineers.
    Stefanini C; Orofino S; Manfredi L; Mintchev S; Marrazza S; Assaf T; Capantini L; Sinibaldi E; Grillner S; Wallén P; Dario P
    Bioinspir Biomim; 2012 Jun; 7(2):025001. PubMed ID: 22619181
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model.
    Jusufi A; Vogt DM; Wood RJ; Lauder GV
    Soft Robot; 2017 Sep; 4(3):202-210. PubMed ID: 29182079
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydrodynamic fin function of brief squid, Lolliguncula brevis.
    Stewart WJ; Bartol IK; Krueger PS
    J Exp Biol; 2010 Jun; 213(Pt 12):2009-24. PubMed ID: 20511514
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer.
    Peng J; Alben S
    Bioinspir Biomim; 2012 Mar; 7(1):016012. PubMed ID: 22345408
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aerobic respiratory costs of swimming in the negatively buoyant brief squid Lolliguncula brevis.
    Bartol IK; Mann R; Patterson MR
    J Exp Biol; 2001 Nov; 204(Pt 21):3639-53. PubMed ID: 11719530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.