These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34043584)

  • 1. A 3D underwater robotic collective called Blueswarm.
    Wolek A; Paley DA
    Sci Robot; 2021 Jan; 6(50):. PubMed ID: 34043584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implicit coordination for 3D underwater collective behaviors in a fish-inspired robot swarm.
    Berlinger F; Gauci M; Nagpal R
    Sci Robot; 2021 Jan; 6(50):. PubMed ID: 34043581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global Vision-Based Formation Control of Soft Robotic Fish Swarm.
    Zhang Z; Yang T; Zhang T; Zhou F; Cen N; Li T; Xie G
    Soft Robot; 2021 Jun; 8(3):310-318. PubMed ID: 32654595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altering Fish Behavior by Sensing Swarm Patterns of Fish in an Artificial Aquatic Environment Using an Interactive Robotic Fish.
    Manawadu UA; De Zoysa M; Perera JDHS; Hettiarachchi IU; Lambacher SG; Premachandra C; De Silva PRS
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Cephalopod-Inspired Soft-Robotic Siphon for Thrust Vectoring and Flow Rate Regulation.
    Zhang R; Shen Z; Zhong H; Tan J; Hu Y; Wang Z
    Soft Robot; 2021 Aug; 8(4):416-431. PubMed ID: 32758059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An immune-inspired swarm aggregation algorithm for self-healing swarm robotic systems.
    Timmis J; Ismail AR; Bjerknes JD; Winfield AF
    Biosystems; 2016 Aug; 146():60-76. PubMed ID: 27178784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fuzzy-based self organizing aggregation method for swarm robots.
    Mısır O; Gökrem L; Serhat Can M
    Biosystems; 2020 Oct; 196():104187. PubMed ID: 32599012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake and accessibility of surgical robotics in England.
    Lam K; Clarke J; Purkayastha S; Kinross JM
    Int J Med Robot; 2021 Feb; 17(1):1-7. PubMed ID: 32979293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current Robotic Platforms in Surgery and the Road Ahead.
    Rojas A; Gachabayov M; Abouezzi ZE; Bergamaschi R; Latifi R
    Surg Technol Int; 2021 May; 38():39-46. PubMed ID: 33861861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A robotic honeycomb for interaction with a honeybee colony.
    Barmak R; Stefanec M; Hofstadler DN; Piotet L; Schönwetter-Fuchs-Schistek S; Mondada F; Schmickl T; Mills R
    Sci Robot; 2023 Mar; 8(76):eadd7385. PubMed ID: 36947600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Added value of 3D-vision during robotic pancreatoduodenectomy anastomoses in biotissue (LAEBOT 3D2D): a randomized controlled cross-over trial.
    Zwart MJW; Jones LR; Balduzzi A; Takagi K; Vanlander A; van den Boezem PB; Daams F; Rosman C; Lips DJ; Moser AJ; Hogg ME; Busch ORC; Stommel MWJ; Besselink MG;
    Surg Endosc; 2021 Jun; 35(6):2928-2935. PubMed ID: 32661707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decentralized Control for Swarm Robots That Can Effectively Execute Spatially Distributed Tasks.
    Kano T; Naito E; Aoshima T; Ishiguro A
    Artif Life; 2020; 26(2):242-259. PubMed ID: 32271634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Paradigm for Underwater Monitoring Using Mobile Sensor Networks.
    Babić A; Lončar I; Arbanas B; Vasiljević G; Petrović T; Bogdan S; Mišković N
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next-generation robotic surgery--from the aspect of surgical robots developed by industry.
    Nakadate R; Arata J; Hashizume M
    Minim Invasive Ther Allied Technol; 2015 Feb; 24(1):2-7. PubMed ID: 25627433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial intelligence and robotic surgery: current perspective and future directions.
    Bhandari M; Zeffiro T; Reddiboina M
    Curr Opin Urol; 2020 Jan; 30(1):48-54. PubMed ID: 31724999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Present and Future Spinal Robotic and Enabling Technologies.
    Khalsa SSS; Mummaneni PV; Chou D; Park P
    Oper Neurosurg (Hagerstown); 2021 Jun; 21(Suppl 1):S48-S56. PubMed ID: 34128072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From animal collective behaviors to swarm robotic cooperation.
    Duan H; Huo M; Fan Y
    Natl Sci Rev; 2023 May; 10(5):nwad040. PubMed ID: 37056435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering the evolution of self-organizing behaviors in swarm robotics: a case study.
    Trianni V; Nolfi S
    Artif Life; 2011; 17(3):183-202. PubMed ID: 21554112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Coarse-to-Fine Method for Estimating the Axis Pose Based on 3D Point Clouds in Robotic Cylindrical Shaft-in-Hole Assembly.
    Li C; Chen P; Xu X; Wang X; Yin A
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34204808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A swarm design paradigm unifying swarm behaviors using minimalistic communication.
    Cherian Varughese J; Hornischer H; Zahadat P; Thenius R; Wotawa F; Schmickl T
    Bioinspir Biomim; 2020 Mar; 15(3):036005. PubMed ID: 31971516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.