These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34043720)

  • 1. Spatial heterogeneity of cutaneous blood flow respiratory-related oscillations quantified via laser speckle contrast imaging.
    Mizeva I; Potapova E; Dremin V; Kozlov I; Dunaev A
    PLoS One; 2021; 16(5):e0252296. PubMed ID: 34043720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of laser speckle contrast imaging with laser Doppler for assessing microvascular function.
    Tew GA; Klonizakis M; Crank H; Briers JD; Hodges GJ
    Microvasc Res; 2011 Nov; 82(3):326-32. PubMed ID: 21803051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microvascular blood flow monitoring with laser speckle contrast imaging using the generalized differences algorithm.
    Humeau-Heurtier A; Mahé G; Abraham P
    Microvasc Res; 2015 Mar; 98():54-61. PubMed ID: 25576743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reproducibility and normalization of reactive hyperemia using laser speckle contrast imaging.
    Shirazi BR; Valentine RJ; Lang JA
    PLoS One; 2021; 16(1):e0244795. PubMed ID: 33412561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral analysis of the laser Doppler perfusion signal in human skin before and after exercise.
    Kvernmo HD; Stefanovska A; Bracic M; Kirkebøen KA; Kvernebo K
    Microvasc Res; 1998 Nov; 56(3):173-82. PubMed ID: 9828155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reproducibility of high-resolution laser speckle contrast imaging to assess cutaneous microcirculation for wound healing monitoring in mice.
    Couturier A; Bouvet R; Cracowski JL; Roustit M
    Microvasc Res; 2022 May; 141():104319. PubMed ID: 35065086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavelet Analysis of the Temporal Dynamics of the Laser Speckle Contrast in Human Skin.
    Mizeva I; Dremin V; Potapova E; Zherebtsov E; Kozlov I; Dunaev A
    IEEE Trans Biomed Eng; 2020 Jul; 67(7):1882-1889. PubMed ID: 31675309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavelet phase coherence analysis of the skin blood flow oscillations in human.
    Tankanag AV; Grinevich AA; Kirilina TV; Krasnikov GV; Piskunova GM; Chemeris NK
    Microvasc Res; 2014 Sep; 95():53-9. PubMed ID: 25026413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pilot study: Wavelet cross-correlation of cardiovascular oscillations under controlled respiration in humans.
    Tankanag A; Krasnikov G; Mizeva I
    Microvasc Res; 2020 Jul; 130():103993. PubMed ID: 32194083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of infrared thermography and laser speckle contrast imaging for the dynamic assessment of digital microvascular function.
    Pauling JD; Shipley JA; Raper S; Watson ML; Ward SG; Harris ND; McHugh NJ
    Microvasc Res; 2012 Mar; 83(2):162-7. PubMed ID: 21763703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of Dynamic optical coherence tomography for non-invasive, in vivo microcirculation imaging of the skin.
    Themstrup L; Welzel J; Ciardo S; Kaestle R; Ulrich M; Holmes J; Whitehead R; Sattler EC; Kindermann N; Pellacani G; Jemec GB
    Microvasc Res; 2016 Sep; 107():97-105. PubMed ID: 27235002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vessel packaging effect in laser speckle contrast imaging and laser Doppler imaging.
    Fredriksson I; Larsson M
    J Biomed Opt; 2017 Oct; 22(10):1-7. PubMed ID: 29019179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-frequency oscillations of the laser Doppler perfusion signal in human skin.
    Kvandal P; Landsverk SA; Bernjak A; Stefanovska A; Kvernmo HD; Kirkebøen KA
    Microvasc Res; 2006 Nov; 72(3):120-7. PubMed ID: 16854436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive examination of endothelial, sympathetic, and myogenic contributions to regional differences in the human cutaneous microcirculation.
    Hodges GJ; Del Pozzi AT
    Microvasc Res; 2014 May; 93():87-91. PubMed ID: 24742702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronous rhythmical vasomotion in the human cutaneous microvasculature during nonpulsatile cardiopulmonary bypass.
    Podgoreanu MV; Stout RG; El-Moalem HE; Silverman DG
    Anesthesiology; 2002 Nov; 97(5):1110-7. PubMed ID: 12411793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Preclinical Laser Speckle Contrast Imaging Instrument for Assessing Systemic and Retinal Vascular Function in Small Rodents.
    Patel DD; Dhalla AH; Viehland C; Connor TB; Lipinski DM
    Transl Vis Sci Technol; 2021 Aug; 10(9):19. PubMed ID: 34403474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between phasic changes in human skin blood flow and autonomic tone.
    Bernardi L; Rossi M; Fratino P; Finardi G; Mevio E; Orlandi C
    Microvasc Res; 1989 Jan; 37(1):16-27. PubMed ID: 2921947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning of speckle statistics for in vivo and noninvasive characterization of cutaneous wound regions using laser speckle contrast imaging.
    Basak K; Dey G; Mahadevappa M; Mandal M; Sheet D; Dutta PK
    Microvasc Res; 2016 Sep; 107():6-16. PubMed ID: 27131831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimisation of movement detection and artifact removal during laser speckle contrast imaging.
    Omarjee L; Signolet I; Humeau-Heutier A; Martin L; Henrion D; Abraham P
    Microvasc Res; 2015 Jan; 97():75-80. PubMed ID: 25261716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood perfusion values of laser speckle contrast imaging and laser Doppler flowmetry: is a direct comparison possible?
    Binzoni T; Humeau-Heurtier A; Abraham P; Mahe G
    IEEE Trans Biomed Eng; 2013 May; 60(5):1259-65. PubMed ID: 23232361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.