These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 34044181)

  • 1. Transporters and tubule crystals in the insect Malpighian tubule.
    Reynolds CJ; Turin DR; Romero MF
    Curr Opin Insect Sci; 2021 Oct; 47():82-89. PubMed ID: 34044181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lead (Pb
    Branco AJ; Vattamparambil AS; Landry GM
    Environ Toxicol Pharmacol; 2021 Oct; 87():103695. PubMed ID: 34171488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted renal knockdown of Na
    Ghimire S; Terhzaz S; Cabrero P; Romero MF; Davies SA; Dow JAT
    Am J Physiol Renal Physiol; 2019 Oct; 317(4):F930-F940. PubMed ID: 31364377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethylene glycol induces calcium oxalate crystal deposition in Malpighian tubules: a Drosophila model for nephrolithiasis/urolithiasis.
    Chen YH; Liu HP; Chen HY; Tsai FJ; Chang CH; Lee YJ; Lin WY; Chen WC
    Kidney Int; 2011 Aug; 80(4):369-77. PubMed ID: 21451462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical-grade Garcinia cambogia extract dissolves calcium oxalate crystals in Drosophila kidney stone models.
    Fan QX; Gong SQ; Hong XZ; Feng XM; Zhang FJ
    Eur Rev Med Pharmacol Sci; 2020 Jun; 24(11):6434-6445. PubMed ID: 32572941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Drosophila Malpighian tubule as a model for mammalian tubule function.
    Rodan AR
    Curr Opin Nephrol Hypertens; 2019 Sep; 28(5):455-464. PubMed ID: 31268918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxalate-Degrading Bacillus subtilis Mitigates Urolithiasis in a Drosophila melanogaster Model.
    Al KF; Daisley BA; Chanyi RM; Bjazevic J; Razvi H; Reid G; Burton JP
    mSphere; 2020 Sep; 5(5):. PubMed ID: 32907948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drosophila melanogaster as an emerging translational model of human nephrolithiasis.
    Miller J; Chi T; Kapahi P; Kahn AJ; Kim MS; Hirata T; Romero MF; Dow JA; Stoller ML
    J Urol; 2013 Nov; 190(5):1648-56. PubMed ID: 23500641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfate and thiosulfate inhibit oxalate transport via a dPrestin (Slc26a6)-dependent mechanism in an insect model of calcium oxalate nephrolithiasis.
    Landry GM; Hirata T; Anderson JB; Cabrero P; Gallo CJ; Dow JA; Romero MF
    Am J Physiol Renal Physiol; 2016 Jan; 310(2):F152-9. PubMed ID: 26538444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional studies of Drosophila zinc transporters reveal the mechanism for zinc excretion in Malpighian tubules.
    Yin S; Qin Q; Zhou B
    BMC Biol; 2017 Feb; 15(1):12. PubMed ID: 28196538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a new insight of calcium oxalate stones in Drosophila by micro-computerized tomography.
    Chen WC; Chen HY; Liao PC; Wang SJ; Tsai MY; Chen YH; Lin WY
    Urolithiasis; 2018 Apr; 46(2):149-155. PubMed ID: 28260226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic knockdown of a single organic anion transporter alters the expression of functionally related genes in Malpighian tubules of Drosophila melanogaster.
    Chahine S; Campos A; O'Donnell MJ
    J Exp Biol; 2012 Aug; 215(Pt 15):2601-10. PubMed ID: 22786636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo Drosophilia genetic model for calcium oxalate nephrolithiasis.
    Hirata T; Cabrero P; Berkholz DS; Bondeson DP; Ritman EL; Thompson JR; Dow JA; Romero MF
    Am J Physiol Renal Physiol; 2012 Dec; 303(11):F1555-62. PubMed ID: 22993075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epithelial Function in the Drosophila Malpighian Tubule: An In Vivo Renal Model.
    Davies SA; Cabrero P; Marley R; Corrales GM; Ghimire S; Dornan AJ; Dow JAT
    Methods Mol Biol; 2019; 1926():203-221. PubMed ID: 30742274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Drosophila genetic model of nephrolithiasis: transcriptional changes in response to diet induced stone formation.
    Chung VY; Turney BW
    BMC Urol; 2017 Nov; 17(1):109. PubMed ID: 29183349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic changes in response to crystal formation in Drosophila Malpighian tubules.
    Chung VY; Konietzny R; Charles P; Kessler B; Fischer R; Turney BW
    Fly (Austin); 2016 Apr; 10(2):91-100. PubMed ID: 27064297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the Malpighian tubule from functional genomics.
    Dow JA
    J Exp Biol; 2009 Feb; 212(Pt 3):435-45. PubMed ID: 19151219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endocrine regulation of MFS2 by branchless controls phosphate excretion and stone formation in Drosophila renal tubules.
    Rose E; Lee D; Xiao E; Zhao W; Wee M; Cohen J; Bergwitz C
    Sci Rep; 2019 Jun; 9(1):8798. PubMed ID: 31217461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential role of fluctuations in the composition of renal tubular fluid through the nephron in the initiation of Randall's plugs and calcium oxalate crystalluria in a computer model of renal function.
    Robertson WG
    Urolithiasis; 2015 Jan; 43 Suppl 1():93-107. PubMed ID: 25407799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Animal models of kidney stone formation: an analysis.
    Khan SR
    World J Urol; 1997; 15(4):236-43. PubMed ID: 9280052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.