BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 34044240)

  • 1. Nitrogen and 17β-Estradiol level regulate Thermosynechococcus sp. CL-1 carbon dioxide fixation, monosaccharide production, and estrogen degradation.
    Chang JY; Narindri Rara Winayu B; Hsueh HT; Chu H
    Bioresour Technol; 2021 Sep; 336():125313. PubMed ID: 34044240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous 17β-estradiol degradation, carbon dioxide fixation, and carotenoid accumulation by Thermosynechococcus sp. CL-1.
    Narindri Rara Winayu B; Chang YL; Hsueh HT; Chu H
    Bioresour Technol; 2022 Jun; 354():127197. PubMed ID: 35460842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of endocrine disruptor compounds, CO
    Narindri Rara Winayu B; Cheng HF; Hsueh HT; Chu H
    J Biotechnol; 2023 Aug; 373():1-11. PubMed ID: 37330059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of Thermosynechococcus sp. CL-1 performance on biomass productivity and CO
    Chu HM; Narindri B; Hsueh HT; Chu H
    J Photochem Photobiol B; 2020 Apr; 205():111822. PubMed ID: 32135470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO
    Narindri Rara Winayu B; Hsueh HT; Chu H
    Bioresour Technol; 2022 Nov; 364():128105. PubMed ID: 36243258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of light availability on the biomass production, CO2 fixation, and bioethanol production potential of Thermosynechococcus CL-1.
    Su CM; Hsueh HT; Li TY; Huang LC; Chu YL; Tseng CM; Chu H
    Bioresour Technol; 2013 Oct; 145():162-5. PubMed ID: 23545071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta.
    Hsueh HT; Li WJ; Chen HH; Chu H
    J Photochem Photobiol B; 2009 Apr; 95(1):33-9. PubMed ID: 19167907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elimination of inorganic carbon and nitrogen resided in swine wastewater using Thermosynechococcus sp. CL-1 enriched culture.
    Narindri Rara Winayu B; Chuang HP; Hsueh HT; Chu H
    Bioresour Technol; 2021 Sep; 336():125325. PubMed ID: 34052545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of dissolved inorganic carbon and nutrient levels on carbon fixation and properties of Thermosynechococcus sp. in a continuous system.
    Su CM; Hsueh HT; Chen HH; Chu H
    Chemosphere; 2012 Jul; 88(6):706-11. PubMed ID: 22560699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characteristics of a cyanobacterium isolated from a hot spring with dissolved inorganic carbon.
    Hsueh HT; Chu H; Chang CC
    Environ Sci Technol; 2007 Mar; 41(6):1909-14. PubMed ID: 17410783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems.
    Shi W; Wang L; Rousseau DP; Lens PN
    Environ Sci Pollut Res Int; 2010 May; 17(4):824-33. PubMed ID: 20213308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Genomic Analysis of a Novel Strain of Taiwan Hot-Spring Cyanobacterium
    Cheng YI; Chou L; Chiu YF; Hsueh HT; Kuo CH; Chu HA
    Front Microbiol; 2020; 11():82. PubMed ID: 32082292
    [No Abstract]   [Full Text] [Related]  

  • 13. Production of phycobiliprotein and carotenoid by efficient extraction from Thermosynechococcus sp. CL-1 cultivation in swine wastewater.
    Narindri Rara Winayu B; Tung Lai K; Ta Hsueh H; Chu H
    Bioresour Technol; 2021 Jan; 319():124125. PubMed ID: 32977095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Low Temperature, Nitrogen Starvation and Their Combination on the Photosynthesis and Metabolites of
    Li X; Liang Y; Li K; Jin P; Tang J; Klepacz-Smółka A; Ledakowicz S; Daroch M
    Plants (Basel); 2021 Oct; 10(10):. PubMed ID: 34685910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of an efficient estrogen-degrading bacterium Stenotrophomonas maltophilia SJTH1 in saline-, alkaline-, heavy metal-contained environments or solid soil and identification of four 17β-estradiol-oxidizing dehydrogenases.
    Xiong W; Yin C; Wang Y; Lin S; Deng Z; Liang R
    J Hazard Mater; 2020 Mar; 385():121616. PubMed ID: 31780289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and genome analysis of a novel 17β-estradiol degradation bacterium,
    Wang Y; Zhao X; Tian K; Meng F; Zhou D; Xu X; Zhang H; Huo H
    3 Biotech; 2020 Apr; 10(4):166. PubMed ID: 32206500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of 17β-estradiol pollution on water microbial methane oxidation activity.
    Ruan A; Zong F; Zhao Y; Liu C; Chen J
    Environ Toxicol Chem; 2014 Apr; 33(4):768-75. PubMed ID: 24408771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association between urinary levels of bisphenol-A and estrogen metabolism in Korean adults.
    Kim EJ; Lee D; Chung BC; Pyo H; Lee J
    Sci Total Environ; 2014 Feb; 470-471():1401-7. PubMed ID: 23954212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The responses of bacterial community and N
    Li Y; Sun Y; Zhang H; Wang L; Zhang W; Niu L; Wang P; Wang C
    Environ Res; 2019 Dec; 179(Pt A):108769. PubMed ID: 31574450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photosynthetic accumulation of carbon storage compounds under CO₂ enrichment by the thermophilic cyanobacterium Thermosynechococcus elongatus.
    Eberly JO; Ely RL
    J Ind Microbiol Biotechnol; 2012 Jun; 39(6):843-50. PubMed ID: 22383176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.